
 

 

Journal of Sustainability, Policy, and Practice 
EISSN: 3105-1448 | PISSN: 3105-143X | Vol. 2, No. 1 (2026) 

 

 125  

Review 

Applications of Artificial Intelligence Techniques in Medical 

Drug Discovery and Precision Treatment 

Xiaojing Li 1,* 

1 School of Biological Sciences, Universiti Sains Malaysia, Penang, Malaysia 

* Correspondence: Xiaojing Li, School of Biological Sciences, Universiti Sains Malaysia, Penang, Malaysia 

Abstract: Artificial intelligence (AI) has revolutionized various facets of medical drug discovery and 

precision treatment. This review paper provides a comprehensive overview of AI techniques 

applied in these domains, encompassing historical developments, core applications, comparative 

analyses, existing challenges, and future perspectives. The review begins with a historical overview 

of AI in medicine, charting its evolution from expert systems to deep learning. Core applications are 

then explored, including AI-driven drug target identification, de novo drug design, prediction of 

drug efficacy and toxicity, and patient stratification for precision treatment. Specific AI techniques 

such as machine learning, deep learning, and natural language processing are examined in the 

context of each application. A critical comparison of different AI approaches highlights their 

strengths and limitations. The review also addresses challenges in the field, such as data biases, lack 

of interpretability, and regulatory hurdles. Finally, future directions are discussed, emphasizing the 

potential of AI to transform drug discovery and personalized medicine. This review aims to serve 

as essential reference for researchers and practitioners in the intersection of AI and medicine, 

inspiring future advancements in the field. 
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1. Introduction 

1.1. Background and Motivation 

The intersection of artificial intelligence (AI) and medicine holds immense promise, 

particularly in revolutionizing drug discovery and enabling precision treatment strategies. 

Traditional drug development is a lengthy, expensive, and often inefficient process, 

characterized by high failure rates and significant resource investment. Similarly, 

conventional treatment approaches often follow a one-size-fits-all model, neglecting the 

individual variability in patient responses [1]. AI offers the potential to overcome these 

limitations by accelerating the identification of drug candidates, predicting treatment 

outcomes, and tailoring therapies based on individual patient profiles, considering factors 

like genetics (𝑔), lifestyle (𝑙), and environment (𝑒). 

1.2. Scope and Objectives 

This review focuses on the application of artificial intelligence (AI) techniques, 

specifically machine learning, deep learning, and natural language processing, in medical 

drug discovery and precision treatment. We will cover applications including target 

identification, drug design, clinical trial optimization, and personalized medicine. The 

objectives are to provide a comprehensive overview of current AI applications in these 
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areas, identify key challenges hindering widespread adoption, and suggest future 

research directions to accelerate AI-driven advancements in healthcare, ultimately 

improving patient outcomes and reducing healthcare costs, where 𝑐𝑜𝑠𝑡 is a function of 

𝑡𝑖𝑚𝑒 and 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠. 

2. Historical Overview of AI in Medicine 

2.1. Early Expert Systems 

Early AI in medicine centered on expert systems designed for diagnosis and 

treatment. MYCIN, for example, aimed to diagnose bacterial infections and recommend 

antibiotics. These systems encoded expert knowledge into rules, enabling automated 

reasoning (see Table 1). Successes included demonstrating the feasibility of AI-driven 

decision support. However, limitations arose from knowledge acquisition bottlenecks, 

difficulty handling uncertainty, and limited generalizability beyond narrow domains. The 

𝑃(𝐷 ∣ 𝑆)probability of disease D given symptom S was often hard to quantify. 

Table 1. Evolution of AI Technologies in Medicine. 

Era 
Technolog

y 
Description 

Key 

Features 
Successes Limitations Challenges 

Earl

y AI 

Expert 

Systems 

(e.g., 

MYCIN) 

Rule-based 

systems for 

diagnosis and 

treatment 

recommendation

s. 

Encoding 

expert 

knowledg

e into 

rules for 

automate

d 

reasoning

. 

Demonstrate

d feasibility 

of AI-driven 

decision 

support. 

Knowledge 

acquisition 

bottlenecks, 

difficulty 

handling 

uncertainty, 

limited 

generalizabilit

y. 

Quantifying 

probabilities like 

𝑃(𝐷|𝑆)(probabili

ty of disease 𝐷 

given symptom 

𝑆). 

2.2. Machine Learning Era 

The machine learning era marked a significant paradigm shift, moving from rule-

based expert systems to data-driven approaches. Statistical models, such as logistic 

regression for classification and linear regression for prediction of drug efficacy (𝑦 = 𝑚𝑥 +

𝑏), gained prominence. Machine learning offered advantages like adaptability to new data 

and the ability to uncover hidden patterns. However, it also presented challenges, 

including the need for large datasets and the “black box” nature of some algorithms, 

contrasting with the transparency of expert systems [2]. 

2.3. Deep Learning Revolution 

The deep learning revolution significantly advanced medical AI. These models excel 

at learning intricate patterns from massive datasets, surpassing traditional machine 

learning. This capability is crucial for drug discovery, enabling prediction of drug-target 

interactions and molecular properties with unprecedented accuracy. In precision 

treatment, deep learning analyzes patient data ( 𝑥𝑖 ), like genomics and imaging, to 

personalize treatment plans and predict therapeutic response (𝑦𝑖 = 𝑓(𝑥𝑖)), paving the way 

for more effective and targeted therapies. 

3. AI-Driven Drug Target Identification and Validation 

3.1. Target Identification using Genomics and Proteomics Data 

AI algorithms are revolutionizing drug target identification by leveraging the vast 

amounts of genomic and proteomic data available. Network analysis identifies key 

proteins within biological pathways, where nodes represent proteins and edges represent 

interactions. Differential expression analysis pinpoints genes and proteins that are 

significantly upregulated or downregulated in disease states compared to healthy 
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controls, calculated using statistical tests like t-tests or ANOVA, with p<0.05 often 

considered significant (see Table 2) [3]. Machine learning models, including support 

vector machines (SVMs) and deep neural networks (DNNs), are trained on multi-omics 

data to predict novel drug targets. These models learn complex relationships between 

genomic features, protein expression levels, and disease phenotypes, assigning a 

probability score P (target | data) indicating the likelihood of a protein being a viable 

target. This integrated approach accelerates the target discovery process. 

Table 2. Comparison of Genomics and Proteomics in Target Identification with AI. 

Feature Genomics Proteomics 

Data Type 
DNA sequences, gene expression 

levels (mRNA) 

Protein sequences, protein 

expression levels 

Information 

Provided 

Genetic predisposition to disease, 

potential for gene-based therapies 

Actual protein activity and 

abundance, direct indicators of 

cellular function 

Role in Target 

Identification 

Identifies genes that are 

differentially expressed or mutated 

in disease 

Quantifies protein expression 

changes, identifies post-translational 

modifications 

AI Application 

Predicts gene targets based on 

sequence analysis and gene 

expression profiles 

Predicts protein targets based on 

protein expression patterns and 

interactions. 

Network 

Analysis 

Identifies key genes within gene 

regulatory networks. 

Identifies key proteins within 

protein-protein interaction 

networks. 

Differential 

Expression 

Analysis 

Detects genes with significantly 

altered expression levels in disease 

states, calculated using statistical 

tests like 𝑡-tests or ANOVA, with 

𝑝 < 0.05 often considered 

significant. 

Detects proteins with significantly 

altered expression levels in disease 

states, calculated using statistical 

tests like 𝑡-tests or ANOVA, with 

𝑝 < 0.05 often considered 

significant. 

Machine 

Learning 

Models 

Trained on genomic datasets to 

predict drug target potential and 

assign a probability score 

𝑃(𝑡𝑎𝑟𝑔𝑒𝑡|𝑑𝑎𝑡𝑎). 

Trained on proteomic datasets to 

predict drug target potential and 

assign a probability score 

𝑃(𝑡𝑎𝑟𝑔𝑒𝑡|𝑑𝑎𝑡𝑎). 

Limitations 

Does not always reflect protein 

levels or activity due to post-

transcriptional regulation. 

Technically challenging to quantify 

all proteins comprehensively; may 

miss rare or transient protein 

modifications. 

3.2. Virtual Screening and Hit Discovery 

AI significantly accelerates virtual screening for hit discovery by computationally 

evaluating large compound libraries against a target protein. Docking simulations predict 

the binding pose and affinity of each compound to the target’s binding site. These 

simulations utilize scoring functions, which are mathematical models estimating the 

binding free energy (Δ𝐺𝑏𝑖𝑛𝑑 ) based on factors like shape complementarity, hydrogen 

bonding, and hydrophobic interactions. Traditional scoring functions are often enhanced 

by machine learning (ML) models. ML algorithms, trained on experimental binding data, 

can learn complex relationships between molecular features and binding affinity, leading 

to more accurate hit prediction [4]. These ML-based scoring functions can prioritize 

compounds with a higher probability of binding, significantly reducing the number of 

compounds requiring experimental validation and accelerating the drug discovery 

process. 
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3.3. De Novo Drug Design 

AI plays a crucial role in de novo drug design, enabling the generation of novel drug 

candidates from scratch, tailored to specific targets and desired properties. Generative 

models, such as variational autoencoders (VAEs) and generative adversarial networks 

(GANs), learn the underlying distribution of chemical space from existing drug-like 

molecules and then sample new molecules with optimized characteristics like binding 

affinity and ADMET ( absorption, distribution, metabolism, excretion, and toxicity ) 

properties. Reinforcement learning (RL) algorithms further refine these generated 

molecules by rewarding those that exhibit improved target binding or other desirable 

attributes. The RL agent learns to navigate the chemical space and optimize molecular 

structures based on feedback from a reward function. Evolutionary algorithms, inspired 

by natural selection, iteratively improve a population of molecules through processes of 

mutation and selection, driving the population towards molecules with higher fitness 

scores, often defined by their predicted activity against the target. These AI-driven 

approaches significantly accelerate the drug discovery process by exploring a vast 

chemical space and identifying promising drug candidates that might be missed by 

traditional methods [5]. 

4. AI in Predictive Modeling of Drug Efficacy and Toxicity 

4.1. Predicting Drug Efficacy using Clinical Trial Data 

AI algorithms are increasingly employed to analyze clinical trial data and predict 

drug efficacy, accelerating drug development and enabling precision treatment strategies. 

Survival analysis, often utilizing models like Cox proportional hazards, can predict time-

to-event outcomes such as disease progression or death, allowing for the assessment of a 

drug’s impact on patient survival. Regression models, including linear and logistic 

regression, are used to predict continuous or categorical efficacy endpoints based on 

patient characteristics and treatment regimens. Machine learning techniques, such as 

support vector machines and neural networks, offer more sophisticated approaches to 

response prediction. These algorithms can identify complex relationships between patient 
features (𝑥𝑖), drug properties (𝑑𝑗), and treatment outcomes (𝑦), enabling the identification 

of patient subgroups that are most likely to respond favorably to a specific treatment. By 

uncovering these predictive biomarkers, AI facilitates the design of more targeted and 

effective clinical trials and personalized treatment plans [6]. 

4.2. Predicting Drug Toxicity using Preclinical Data 

Predicting drug toxicity early in the development pipeline is crucial for reducing 

attrition rates and ensuring patient safety. AI techniques leverage preclinical data, 

including in vitro and in vivo studies, to build predictive models (see Table 3). 

Quantitative structure-activity relationship (QSAR) modeling correlates chemical 

structure with toxicity endpoints using statistical methods. Machine learning algorithms, 

such as support vector machines and random forests, can be trained on large datasets of 

chemical structures and toxicity data to predict the toxicity of new compounds. These 

models often use molecular descriptors like logP and molecular weight (MW) as input 

features. Deep learning approaches, particularly convolutional neural networks and 

recurrent neural networks, are increasingly used to automatically extract complex 

features from chemical structures and predict toxicity with high accuracy. These methods 

can identify subtle patterns in preclinical data that may be missed by traditional 

approaches, improving the reliability of toxicity predictions. 

Table 3. Examples of AI-based toxicity prediction methods. 

Method Description Input Features Advantages 

Quantitative 

Structure-Activity 

Relationship (QSAR) 

Correlates chemical 

structure with 

Molecular descriptors 

like log𝑃 and 

Relatively simple and 

interpretable. 
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toxicity using 

statistical methods. 

molecular weight 

(𝑀𝑊). 

Support Vector 

Machines (SVM) 

Machine learning 

algorithm trained on 

chemical structures 

and toxicity data. 

Chemical structures 

and toxicity data 

encoded as features. 

Effective in high-

dimensional spaces. 

Random Forests 

Ensemble learning 

method trained on 

chemical structures 

and toxicity data. 

Chemical structures 

and toxicity data 

encoded as features. 

Robust and less prone 

to overfitting. 

Convolutional Neural 

Networks (CNNs) 

Deep learning 

approach for 

automatic feature 

extraction from 

chemical structures. 

Chemical structure 

representations (e.g., 

SMILES strings, 

molecular graphs). 

Can automatically 

learn complex 

features from data. 

Recurrent Neural 

Networks (RNNs) 

Deep learning 

approach for 

automatic feature 

extraction from 

chemical structures. 

Sequential 

representations of 

chemical structures 

(e.g., SMILES strings). 

Effective in capturing 

sequential 

dependencies in 

molecular structures. 

4.3. Integrating Multi-omics Data for Enhanced Prediction 

Integrating multi-omics data, such as genomics, transcriptomics, proteomics, and 

metabolomics, offers a powerful approach to enhance the predictive accuracy of drug 

efficacy and toxicity models. By capturing a more holistic view of the biological system, 

these data types provide complementary information that can reveal complex drug-target 

interactions and downstream effects. AI algorithms, particularly machine learning models, 

are well-suited to handle the high dimensionality and heterogeneity of multi-omics 

datasets [7]. However, several challenges exist. These include data integration 

complexities, batch effects, and the need for sophisticated feature selection techniques to 

identify relevant biomarkers. Opportunities lie in developing novel AI architectures 

capable of effectively fusing multi-omics data, improving model interpretability, and 

ultimately accelerating drug discovery and personalized treatment strategies. The use of 

techniques like network analysis can further refine predictions by considering the 

interconnectedness of 𝑛 biological entities represented by 𝑥𝑖, where 𝑖 = 1,2, . . . , 𝑛. 

5. AI for Patient Stratification and Precision Treatment 

5.1. Identifying Patient Subgroups using Machine Learning 

Machine learning excels at identifying patient subgroups with varying treatment 

responses (see Table 4) [8]. Clustering algorithms group patients based on similarities in 

clinical data (X_i). Classification models predict treatment response (y) for individual 

patients. Dimensionality reduction techniques, such as PCA, handle high-dimensional 

data, improving model performance and revealing key features (f_i) driving subgroup 

differences. These methods enable targeted therapies [9]. 

Table 4. AI Methodologies Used in Patient Stratification. 

Methodology Description 

Key 

Features/Data 

Used 

Outcome 

Clustering 

Algorithms 

Group patients into 

subgroups based on 

similarities in clinical data. 

Clinical data (𝑋𝑖) 

Identification of patient 

subgroups with distinct 

characteristics. 



Journal of Sustainability, Policy, and Practice  Vol. 2, No. 1 (2026) 
 

 130  

Classification 

Models 

Predict treatment response 

(𝑦) for individual patients. 

Clinical data (𝑋𝑖), 

Patient 

characteristics 

Prediction of treatment 

response for individual 

patients. 

Dimensionality 

Reduction (e.g., 

PCA) 

Reduce the number of 

variables while preserving 

important information, 

improving model 

performance and revealing 

key features. 

High-

dimensional 

clinical data 

Identification of key 

features (𝑓𝑖) driving 

subgroup differences, 

improved model 

performance. 

5.2. Predicting Treatment Response using Clinical and Molecular Data 

AI algorithms predict treatment response by analyzing clinical (𝑋) and molecular 

data (𝑌). Regression models estimate continuous responses, while classification models 

predict response categories (e.g., responder/non-responder). Deep learning, utilizing 

neural networks, captures complex relationships between multi-omics data and treatment 

outcomes. These models enhance precision treatment by identifying patients most likely 

to benefit from specific therapies [10]. 

5.3. AI-Driven Treatment Optimization 

AI optimizes treatment by tailoring strategies to individual patient needs. 

Reinforcement learning algorithms can determine optimal dynamic treatment regimes, 

adjusting interventions based on patient response [11]. Personalized dosing, informed by 

AI analysis of patient-specific data like genetics and 𝑃𝐾/𝑃𝐷 parameters, ensures optimal 

drug efficacy while minimizing adverse effects. This leads to more effective and safer 

treatments [12]. 

6. Challenges and Limitations 

6.1. Data Bias and Generalizability 

Data bias presents a significant hurdle in applying AI to drug discovery and precision 

treatment [13]. Medical datasets often reflect existing health disparities, leading to skewed 

representations of certain demographics. This bias can manifest in various forms, 

including under-representation of specific ethnic groups, age ranges, or socioeconomic 

statuses. Consequently, AI models trained on such biased data may exhibit poor 

generalizability, performing accurately on the majority group while failing to provide 

reliable predictions for under-represented populations [14]. Addressing this requires 

concerted efforts to curate diverse and representative datasets that accurately reflect the 

heterogeneity of the patient population, ensuring equitable and effective AI-driven 

healthcare solutions for all. The impact of bias can be quantified using metrics like 𝐹1 

score disparity across different groups [15]. 

6.2. Interpretability and Explainability 

The “black box” nature of many AI models poses a significant challenge in medical 

applications. Clinicians require transparent and understandable reasoning to trust AI-

driven predictions and treatment recommendations. Interpretability ensures that the 

model’s decision-making process is comprehensible, while explainability provides 

insights into why a particular prediction was made [16]. Techniques like SHAP (SHapley 

Additive exPlanations) and LIME (Local Interpretable Model-agnostic Explanations) can 

help illuminate feature importance and model behavior. Furthermore, inherently 

interpretable models, such as decision trees or linear models with regularization (e.g., L1 

regularization where the penalty is 𝜆 ∑ |𝑛
𝑖=1 𝑤𝑖|  for weights 𝑤𝑖  and regularization 

parameter 𝜆), offer greater transparency from the outset [17]. 
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7. Future Perspectives and Conclusion 

7.1. Future Directions 

AI’s future in drug discovery and precision treatment lies in multi-omics data 

integration, generative AI for novel drug design, and personalized treatment optimization 

using reinforcement learning. Breakthroughs may arise from explainable AI, enhancing 

trust and adoption, and federated learning, enabling collaborative research while 

preserving data privacy. 

7.2. Conclusion 

AI offers immense potential in revolutionizing drug discovery and precision 

treatment. This review highlights AI’s capacity to accelerate 𝑅&𝐷, improve diagnostic 

accuracy, and personalize treatment strategies. Future advancements promise even 

greater efficiency and efficacy in healthcare. 
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