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Abstract: The accuracy of financial disclosures filed with the Securities and Exchange Commission
(SEC) remains fundamental to maintaining market integrity and investor confidence. This research
presents a comprehensive deep learning approach for automated detection of disclosure
discrepancies in SEC filings, specifically targeting 10-K and 10-Q annual reports and XBRL-tagged
financial statements. Our methodology employs a hybrid architecture combining deep learning
classification models with rule-based validation frameworks. The core innovation lies in a
Transformer-based discrepancy classifier that processes cross-period text alignments to distinguish
substantive changes from routine modifications, achieving 94.3% accuracy on 3,200 expert-labeled
disclosure pairs. This classifier integrates with XBRL validation rule engines and intelligent
accounting standards checklists to identify numerical contradictions, formatting irregularities, and
narrative inconsistencies across 10-K annual reports, 10-Q quarterly reports, and XBRL-tagged
financial statements. Experimental validation using 2,847 SEC filings from publicly traded
companies demonstrates detection accuracy of 94.3% for cross-period discrepancies and 91.7% for
XBRL tagging errors, significantly outperforming traditional rule-based validation tools. The
practical implementation reduces manual review time by 67% while maintaining high precision in
identifying material misstatements requiring correction before filing.
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1. Introduction
1.1. Significance and Background of SEC Financial Disclosure
1.1.1. Overview of U.S. Securities Market Disclosure Regime

The U.S. securities market operates under comprehensive disclosure frameworks,
with the Securities and Exchange Commission mandating periodic reporting for all
publicly traded companies. Form 10-K annual reports must be filed within 60-90 days
after fiscal year-end, depending on filer status (e.g., large accelerated, accelerated, or non-
accelerated), while Form 10-Q quarterly reports generally follow 40-45-day deadlines,
depending on filer status. These instruments serve as primary vehicles through which
approximately 8,400 domestic issuers communicate material financial information to
investors. Prior research suggests that disclosure errors and misstatements (including
accounting fraud) can distort investor decision-making and increase financing frictions
[1]. Analysis of 14,628 restatements filed between 2010 and 2020 demonstrates that
companies with higher disclosure error rates experience average cost of capital increases
of 142 basis points and market value destruction averaging 8.3% within 30 trading days.
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1.1.2. Impact of Financial Disclosure on Capital Markets

Capital market functioning depends on reducing information asymmetry between
corporate insiders and external stakeholders. Empirical validation shows that firms in the
top quartile of disclosure quality metrics incur 23% lower equity financing costs than
bottom-quartile peers. Regression analysis across 5,243 firms reveals that a one standard
deviation improvement in disclosure quality is associated with a 4.7% valuation premium,
measured through Tobin's Q ratios.

1.2. Problems and Challenges in the Current Disclosure Process
1.2.1. Analysis of Common Disclosure Error Types

Contemporary disclosure workflows exhibit three primary error categories.
Numerical inconsistencies manifest when identical financial metrics appear with
contradictory values across sections. Analysis of SEC comment letters during fiscal year
2023 reveals that 34% of substantive comments address numerical contradictions. Format
irregularities primarily affect XBRL-tagged financial statements. The XBRL US Data
Quality Committee documented that 34% of the examined filings contain at least one
tagging error, including invalid axis-member combinations and inappropriate negative-
value applications.

1.2.2. Limitations of Manual Review

Human-dependent disclosure review processes face structural constraints. Time
pressure represents the most acute challenge, with typical 10-K preparation cycles
requiring 6-8 weeks. Survey data from 238 SEC reporting managers indicates that 67%
characterize their review processes as "rushed" during the final 10 days before filing
deadlines.

1.2.3. Insufficiencies of Existing Disclosure Management Tools

Current disclosure management platforms, such as Workiva, provide substantial
efficiency gains through real-time collaboration and automated XBRL tagging. Despite
these advances, significant capability gaps remain in intelligent error detection. Existing
tools excel at rule-based validation but cannot perform semantic analysis to detect
contradictions between narrative descriptions. The gap between mechanical rule
enforcement and contextual comprehension creates residual error risk [2].

1.3. Research Significance and Contributions
1.3.1. Academic Contributions

This research addresses gaps in the literature on Al-based accuracy in financial
disclosures by developing practical detection methodologies calibrated to SEC filing
requirements. The technical contribution centers on three innovations: (1) a Transformer-
based multi-class classifier for substantive change detection trained on 3,200 expert-
annotated disclosure pairs, utilizing FInBERT embeddings as input features; (2) cross-
period text alignment algorithms optimized for SEC filing document structure; and (3) a
hybrid validation framework integrating deep learning predictions with rule-based XBRL
verification engines.

1.3.2. Practical Value

Public company finance departments gain automated pre-filing validation
capabilities. The 67% reduction in manual review time translates to cost savings averaging
$127,000 per annual reporting cycle. Enhanced disclosure quality ultimately serves SEC's
core mission of investor protection and market integrity maintenance [3].
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2. Related Work
2.1. NLP Technology Development in the Finance Domain
2.1.1. Pre-trained Language Models for Finance

Recent advances in natural language processing have produced domain-specific
language models trained on financial text corpora. FInBERT represents a landmark
development, built by continuing to pre-train the BERT-base architecture on 4.9 billion
tokens from financial communications, including SEC filings [4]. The model achieves
state-of-the-art performance on financial sentiment classification, achieving 88.2%
accuracy on the Financial PhraseBank benchmark datasets. Recent iterations explore
larger architectures, with investigations into LLaMA-2 fine-tuning for financial
applications [5]. These foundation models demonstrate improved capabilities for multi-
document synthesis tasks.

2.1.2. Text Analysis Methods for Financial Documents

Financial document analysis encompasses diverse methodological approaches.
Sentiment analysis of MD&A sections extracts management tone, which correlates with
future operating performance [6]. Named entity recognition systems identify financial
entities, including companies, executives, and products, achieving 91-94% F1-scores using
CREF-based sequence labeling.

2.2. Financial Statement Anomaly and Fraud Detection
2.2.1. Traditional Statistical Methods

Statistical fraud-detection methodologies identify financial ratios that discriminate
between fraudulent and legitimate statements. The Beneish M-Score model combines
eight financial statement ratios into a composite score that predicts the likelihood of
earnings manipulation. Empirical validation demonstrates that M-Score successfully
identifies approximately 76% of subsequent fraud cases.

2.2.2. Machine Learning Methods

Machine learning classification algorithms substantially improve fraud detection
performance. A comparative evaluation across five algorithms using data from 1,200+
fraud cases demonstrates that ensemble methods achieve superior results [7]. Random
forest models achieve 91.3% accuracy and an F1-score of 0.89. Deep learning architectures
designed for sequential data processing show particular promise. Attention mechanisms
enable models to identify which financial statement line items contribute most to fraud
predictions, thereby enhancing interpretability for auditor review [8]. Graph neural
networks represent innovations that incorporate relational information beyond
individual company financials [9].

2.2.3. Multimodal Fusion Approaches

Recognition that fraud often involves coordination between numerical manipulation
and narrative obfuscation motivates the development of multimodal fusion architectures
that combine quantitative metrics with textual analysis. Combined architectures achieve
F1 Scores of 0.94, compared to 0.89 for financial-ratio-only models.

2.3. XBRL Data Quality and Validation Research
2.3.1. Types and Distribution of XBRL Tagging Errors

Systematic examination of XBRL filing quality reveals persistent error patterns. The
XBRL US Data Quality Committee's analysis of 2,000+ filings identified invalid axis-
member combinations as the predominant error category, accounting for 34% of all
detected issues. Negative-value errors are the second-most-common defect at 12%.
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2.3.2. Automated XBRL Validation Methods

Current XBRL validation infrastructure relies primarily on rule-based engines.
Machine learning-assisted tag recommendation systems represent an emerging
enhancement [10]. These systems analyze filing text and financial statement context to
suggest appropriate XBRL tags, achieving 87% accuracy for everyday line items.

3. Methodology
3.1. Text Comparison and Discrepancy Detection Algorithms
3.1.1. Cross-Period Text Alignment

The foundation of our disclosure discrepancy detection approach lies in establishing
robust alignment between corresponding sections across different reporting periods. Our
alignment algorithm incorporates hierarchical document structure recognition designed
explicitly for the SEC filing organization. The process begins with automatic section
identification using a hybrid approach combining rule-based pattern matching for
standard section headers and machine learning classification for less standardized
subsections.

Document structure parsing employs a cascading hierarchy extraction that identifies
major Item boundaries using regular expressions that match SEC-mandated numbering
schemes. This structural decomposition produces a tree representation where leaf nodes
contain coherent text blocks, typically 100-500 words, suitable for semantic comparison.

Semantic similarity computation between aligned text blocks utilizes sentence
embeddings generated through fine-tuned financial language models. Block-level
embeddings aggregate sentence vectors via weighted averaging, with weights derived
from TF-IDF scores. The similarity metric combines cosine similarity between embedding
vectors (weighted 0.6) with lexical overlap measured through character-level edit distance
(weighted 0.4), producing composite scores ranging from 0 to 1.

3.1.2. Discrepancy Identification and Classification

Once cross-period alignment establishes correspondence between disclosure sections,
our discrepancy detection pipeline analyzes aligned content pairs to identify and classify
differences. The methodology distinguishes between substantive changes that carry
informational content and superficial modifications that reflect stylistic variation.

Change detection operates at multiple granularity levels, examining sentence-level
modifications, paragraph-level restructuring, and section-level content additions.
Mathematically, the sentence-level discrepancy score D_s for aligned blocks B_t and B_{t-
1} computes as:

D_s = (1/N) sum_ {i=1 to N} min_j | |E(s_i"t) - E(s_j*{t-1}) | |_2 (1 — sim (s_i"t, s_j*{t-
1)

where E (1) denotes the sentence embedding function, s_i*t represents the ith
sentence in the current period, and N equals the sentence count.

Substantive change classification leverages supervised learning trained on 3,200
aligned disclosure pairs, labeled by experienced SEC accountants, across three categories:
material substantive changes requiring disclosure (18%), informational updates meriting
reviewer awareness (31%), and routine modifications requiring no action (51%). The
severity scoring mechanism assigns risk levels to detected discrepancies based on
contextual factors, including the importance of the disclosure section and the magnitude
of numerical differences [11]. The classification model architecture and training
procedures are detailed in Section 3.4.

3.1.3. MD&A Consistency Detection Between Quarterly and Annual Reports

Management Discussion and Analysis sections present particular challenges for
consistency verification. Our methodology targets explicitly common inconsistency
patterns between quarterly 10-Q MD&A disclosures and subsequent annual 10-K
consolidations. Key metrics description comparison identifies cases where quantitative
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characterizations of operating performance differ between quarterly and annual
discussions.

Risk factor evolution tracking monitors changes in forward-looking risk disclosures.
Automated flagging rules generate alerts when risk factors mentioned in multiple
quarterly reports are omitted from annual disclosures without a resolution discussion [12].

3.2. XBRL Tag Validation Rule Engine
3.2.1. Numerical Matching Validation

XBRL tagging quality depends on the accuracy of numerical alignment between
tagged values and the corresponding amounts in human-readable financial statements.
Our validation engine implements comprehensive numerical matching verification
extending beyond simple value equality checks to encompass calculation relationships
and unit consistency.

Automatic comparison begins with the extraction of numerical values from HTML-
rendered financial statements, identifying tables through DOM structure analysis. Once
financial statement values are extracted and normalized, the system performs
bidirectional validation: verifying each XBRL fact appears with identical value in
rendered statements and confirming each rendered statement amount has corresponding
XBRL tag.

Calculation relationship validation examines whether tagged facts satisfy
mathematical relationships defined in taxonomy calculation linkbases. Standard
relationships include balance sheet summation (current assets + non-current assets = total
assets) and income statement subtotals (gross profit - operating expenses = operating
income).

3.2.2. Tagging Consistency Checks

Beyond individual period accuracy, XBRL data quality requires maintaining
consistent tagging conventions across reporting periods. Our consistency validation
examines the temporal stability of tag selections, identifying cases where identical
financial statement line items receive different taxonomy element tags across quarters.

Cross-period tag element consistency analysis builds a longitudinal profile of tagging
patterns for each company, tracking which US-GAAP taxonomy elements appear in
recurring financial statement line items. The custom extension tag necessity assessment
evaluates whether company-specific extension elements are unavoidable requirements.
Practical deployment integrates tagging consistency validation into pre-filing review
workflows [13].

3.2.3. US-GAAP Taxonomy Compliance Verification

Semantic appropriateness evaluation assesses whether selected XBRL tags accurately
reflect the economic substance of the disclosed financial information. The verification
methodology extracts and analyzes element definitions from US-GAAP taxonomy
documentation, building semantic knowledge graphs representing conceptual
relationships between elements.

Semantic matching analyzes the correspondence between line-item labels in human-
readable financial statements and XBRL element labels/definitions. The system computes
multi-level similarity, including exact/partial label matching, semantic similarity of
definition text using sentence transformers, and alignment with peer company tagging
practices.

3.3. Intelligent Checklist for Accounting Standards Application
3.3.1. ASC 606 Revenue Recognition Disclosure Verification

Revenue recognition under ASC 606 requires extensive disclosures enabling users to
understand the nature, amount, timing, and uncertainty of revenue and cash flows. Our
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intelligent verification checklist automates validation of completeness and consistency for
these requirements.

Performance obligation identification completeness checking verifies that disclosed
performance obligations comprehensively reflect the company's business model. The
methodology extracts revenue-generating activities mentioned throughout the filing and
classifies them into performance obligation categories. Revenue disaggregation disclosure
consistency verification ensures that revenue disaggregation meets requirements while
maintaining internal consistency. Automated reconciliation verification processes
revenue disaggregation tables by extracting numerical values from table structures.

3.3.2. Critical Accounting Estimates Disclosure Validation

MD&A regulations require disclosure of critical accounting estimates-those
requiring management's most difficult, subjective judgments. Our validation
methodology ensures disclosures identify appropriate critical estimates and provide
adequate discussion of estimation processes. Cross-referencing between MD&A and
financial statement footnotes identifies consistency gaps.

3.3.3. Rule Base Design and Maintenance Mechanism

The intelligent checklist infrastructure requires systematic rule maintenance to
remain current with evolving accounting standards. Our architecture implements a
modular, rule-based design that supports efficient updates. Automatic tracking of
standards updates monitors FASB Accounting Standards Updates and SEC regulatory
releases through automated feeds. Rule versioning maintains an audit trail of rule
modifications and monitors validation effectiveness using precision/recall metrics
computed against manual review results [14].

3.4. Deep Learning Architecture for Discrepancy Classification
3.4.1. Model Architecture and Feature Engineering

The substantive change classification module employs a Transformer-based
architecture built upon the FINnBERT pre-trained model, which provides domain-specific
semantic representations for financial texts. The input layer processes aligned disclosure
segment pairs (s_t, s_{t-1}) through the following feature extraction pipeline: (1) Semantic
features: 768-dimensional FinBERT sentence embeddings for both current period s_t and
prior period s_{t-1} segments, capturing contextual financial terminology; (2) Numerical
features: extracted financial figures, percentage changes, and statistical distributions
(mean, variance) from aligned segments; (3) Structural features: disclosure section
identifiers (Item 1A, Item 7, etc.), sentence positions, and paragraph lengths; (4) Change
magnitude features: cosine similarity scores, Euclidean distances between embeddings,
and edit distances between text sequences.

The concatenated feature vector (dimension 1,582) is first passed through a linear
projection to a 1,536-dimensional hidden representation, which then feeds into a three-
layer Transformer encoder with 8 attention heads per layer, followed by two fully
connected layers (512 — 256 — 3) with ReLU activation and dropout (p=0.3) for
regularization.

3.4.2. Training Strategy and Optimization

Model training utilized 3,200 expert-labeled disclosure pairs stratified across three
classes: material substantive changes (18%, n=576), informational updates (31%, n=992),
and routine modifications (51%, n=1,632). To address class imbalance, we employed
weighted cross-entropy loss with class weights inversely proportional to sample
frequencies: w_material = 2.78, w_informational = 1.61, w_routine = 1.00.

The optimization procedure employed the AdamW optimizer (learning rate 2e-5,
weight decay 0.01, 3:=0.9, 3,=0.999) with linear learning rate warmup over the first 10% of
training steps. Training ran for 20 epochs with batch size 16 on NVIDIA V100 GPUs,
requiring approximately 4.2 hours. The dataset split allocated 70% for training (n=2,240),
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15% for validation (n=480), and 15% for testing (n=480), maintaining class distribution
across splits. Early stopping with a patience of 3 epochs prevented overfitting based on
validation F1-score monitoring.

3.4.3. Hybrid Integration with Rule-Based Validation

The final detection framework integrates deep learning predictions with rule-based
validation through a two-stage pipeline. Stage 1 applies the Transformer classifier to
identify candidate discrepancies with probability threshold t=0.65, tuned to balance
precision and recall. Stage 2 routes high-probability predictions (P>0.85) directly to
manual review, while medium-probability predictions (0.65<P<0.85) undergo additional
rule-based verification that examines XBRL tag consistency, numerical calculation
relationships, and compliance with accounting standards. This hybrid approach reduces
the false-positive rate by 34% compared to a pure machine learning classifier while
maintaining comprehensive error coverage.

4. Case Analysis
4.1. Experimental Design and Dataset
4.1.1. Data Sources and Sample Selection

The empirical validation uses a comprehensive dataset of SEC filings from the
EDGAR database, comprising 2,847 complete annual reports (Form 10-K) and associated
quarterly reports from publicly traded companies. Sample selection employed stratified
random sampling to ensure industry representation: technology (22%), healthcare (14%),
financial services (13%), consumer discretionary (12%), industrials (11%), and others
(28%).

Market capitalization stratification divided the sample into large-cap (38%), mid-cap
(41%), and small-cap (21%) stocks to examine whether detection performance varies by
company size. The selection timeframe covered fiscal years 2020-2023. Historical
restatement records provided additional selection criteria, with the sample oversampling
companies with SEC comment letter histories (32%) and accounting restatements (8%)
(see Table 1 for dataset composition and characteristics).

Table 1. Dataset Composition and Characteristics.

Avg Total
Category Subcategory Count Percentage Sections/Filing  Sections
Industry Technology 627 22.0% 68.3 42,814
Healthcare 399 14.0% 64.7 25,815
Financial 370 13.0% 71.2 26,344
Services
Consumer 342 12.0% 62.1 21,238
Discretionary
Industrials 313 11.0% 59.8 18,717
Others 796 28.0% 62.2 49,499
Market
é;pe Large (>$10B) 1,082  38.0% 69.4 75,091
Mid ($2-10B) 1,167  41.0% 64.2 74,921
Small (<$2B) 598 21.0% 57.3 34,265
Fiscal 2020-2023 2847  100.0% 64.8 184,427
Year
Issue With 228 8.0% 66.7 15,208
History Restatements
CommentLetter o)1 35 4o, 65.3 59,488
History
Total All Categories 2,847 100.0% 64.8 184,427
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This table presents the comprehensive breakdown of 2,847 SEC filings analyzed
across industry sectors, market capitalization tiers, and temporal distribution.

4.1.2. Evaluation Metrics Design

Performance evaluation employs multiple complementary metrics. Standard
classification metrics, such as precision, recall, and Fl-score, provide quantitative
assessments. Precision measures the proportion of flagged discrepancies that represent
genuine errors. Recall quantifies the proportion of actual errors successfully detected. The
F1-score harmonizes precision and recall by taking the harmonic mean.

Establishing ground truth required extensive manual annotation by domain experts.
A team of eight professionals with CPA certification (with an average of 7.2 years of
experience) reviewed 4,200 disclosure section pairs, labeling them as containing material
discrepancies, minor issues, or no significant problems. Inter-annotator agreement,
measured using Fleiss' kappa, reached 0.83 (see Table 2 for ground truth annotation
statistics).

Table 2. Ground Truth Annotation Statistics.

Annotation Section  Percenta Inter-rater Mean Review Time
Category Pairs ge Agreement (min)
Material 756 18.0% 0.79 8.7

Discrepancies
Minor Issues 1,302 31.0% 0.81 5.3
No Significant 2,142 51.0% 0.86 3.1
Problems
Total 4,200 100.0% 0.83 52

Expert annotation results from CPA-certified reviewers establish validation
benchmarks for algorithmic performance assessment.

4.2. Detection Effectiveness Analysis
4.2.1. Text Discrepancy Detection Experimental Results

Cross-period disclosure change identification achieved an accuracy of 94.3% across
the validation dataset, with a precision of 92.1% and a recall of 91.8% yielding an F1-score
of 0.919. Performance metrics varied across disclosure section types, with the highest
accuracy in structured sections such as financial statements (96.7%) and risk factors
(95.4%), compared to narrative MD&A discussions (91.2%).

False-positive rate analysis revealed an average of 2.7 flags per 10-K filing, within the
target threshold of 3.0. Critical error recall reached 96.2% for material discrepancies
requiring mandatory correction. Severity score calibration showed a strong correlation
with expert human assessments (Spearman's rank correlation coefficient = 0.87) (see Table
3 for text discrepancy detection performance by section type).

Table 3. Text Discrepancy Detection Performance by Section Type.

) Sample .. F1- False
Section Type Size Precision Recall Score Accuracy Positives/Filing
Financial 8,541 0.957 0943 0950  96.7% 0.4
Statements
Risk Factors 5,694 0.941 0.929  0.935 95.4% 0.6
Business 2,847 0928 0914 0921  94.8% 05
Description
MD&A ) 11,388 0.903 0.887  0.895 91.2% 0.8
Operations
MD&A -
. & . 5,694 0.912 0.901  0.906 92.5% 0.4
Liquidity
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Legal 2278 0934 0918 0926  93.9% 0.3
Proceedings
Weighted 50 /1 0921 0918 0919  94.3% 27
Average

Disaggregated performance metrics across major SEC filing sections demonstrate
that algorithm effectiveness varies according to content structure.

This figure presents a comprehensive performance analysis of the text discrepancy
detection algorithm across different severity classifications of disclosure inconsistencies
(as illustrated in Figure 1). The visualization demonstrates the system's effectiveness in
identifying cross-period changes in SEC filings, stratified by severity levels (minor,
moderate, and critical discrepancies). The results reveal an overall detection accuracy of
94.3% across the validation dataset, with particularly strong performance in critical error
identification (96.2% recall rate). The figure summarizes precision, recall, and F1-score
across severity categories to highlight performance differences by discrepancy criticality.
This performance stratification is crucial for practical implementation, as it demonstrates
the algorithm's ability to prioritize material discrepancies requiring mandatory correction
while maintaining acceptable false-positive rate (averaging 2.7 flags per 10-K filing, within
the target threshold of 3.0).

(A) (B) — Material

Predicted Category Minor

Material  Minor None 08 None

387 161
41% 17%

Material

Precision

True Positive Rate

Minor 429 e 04
3.8% 5.5%
. .
|l Material AUC=0.982
None 212 583 oz |
13% 36% . None AUC=0.971
oo &
g quency 0.0 0.2 08 08 False Positive Rate

0.4
Recall

Figure 1. Cross-Period Discrepancy Detection Performance Across Severity Levels.

4.2.2. XBRL Validation Effectiveness Evaluation

XBRL tag error discovery achieved a detection rate of 91.7% across the validation
sample, which contained 1,247 confirmed tagging errors. The system successfully flagged
1,144 errors while issuing 167 false-positive warnings, yielding a precision of 87.3%.
Performance breakdown across error categories revealed the highest detection rates for
calculation relationship violations (97.2%) and numerical matching discrepancies (95.8%).

Comparison with SEC official validation tools demonstrated that our approach detects
approximately 28% more total errors by incorporating semantic validation layers. The official
EDGAR validation system identified 892 errors (71.5% detection rate). Processing efficiency metrics
indicated an average validation time of 47 seconds per filing, representing an 89% reduction
compared to the estimated manual review time of 7.2 minutes (see Table 4 for XBRL validation
performance by error type).

Table 4. XBRL Validation Performance by Error Type.

] Correction
Error Type Total Detected Detection F%I?e Precision Time
Errors Rate Positives .
(min)
Iculati
Ca' culation 318 309 97.2% 14 95.7% 3.2
Violations
Numerlcal 987 275 95.8% 18 93.9% 4.1
Mismatches
Inval%d A.x1s 234 208 88.9% 31 87.0% 5.7
Combinations
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Negative

Vil 156 147 94.2% 9 94.2% 28
Missing
Required 112 104 92.9% 7 93.7% 6.4
Elements
Inconsistent 98 84 85.7% 2 79.2% 49
Tagging
Semantic 4 35 83.3% 66 34.7% 83
Issues
Total/Average 1247 1,144 91.7% 167 87.3% 51

A detailed breakdown of detection effectiveness across seven categories of XBRL
tagging errors reveals varying algorithmic performance.

This figure provides a benchmarking comparison between the proposed deep
learning-based XBRL validation approach and existing detection methodologies,
including the SEC's official EDGAR validation system and traditional rule-based engines
(as shown in Figure 2). The visualization illustrates detection effectiveness across seven
distinct categories of XBRL tagging errors, including numerical mismatches, calculation
relationship violations, cross-period inconsistencies, and taxonomy compliance issues.
The comparative analysis demonstrates that the proposed method achieves a 91.7%
overall detection rate while identifying approximately 28% more total errors than the
SEC's official validation tools, primarily through the incorporation of semantic validation
layers and machine learning-assisted pattern recognition. The figure compares detection
rates and precision across XBRL error categories for the proposed method and baseline
validation tools, providing empirical evidence of the superiority of the Al-enhanced
validation framework over conventional rule-based approaches for comprehensive XBRL
quality assurance.

[ Precision [l Recall [__] F1-Score

107 921 918 o919 o8 012 503 57 oa0 048
90 + 851 873 87.6
80 -
70
60
50 -
40
30 A
20 A
10
[
Text XBRL Accounting Integrated
Discrepancy Validation Standards Multi-Method

Figure 2. Comparative Analysis of Detection Methods Performance.

4.2.3. Accounting Standards Checklist Effectiveness

ASC 606 revenue recognition disclosure completeness detection identified gaps in
34.2% of examined filings, with performance obligation documentation inadequacies
representing the most common deficiency (18.7%). The intelligent checklist successfully
flagged 89.3% of disclosure gaps confirmed through expert manual review. Comparison
with manual review processes revealed that automated checklist detection required an
average of 2.3 minutes per filing, versus 18.7 minutes for an experienced accountant's
review, resulting in an 87.6%-time reduction.

Revenue disaggregation consistency verification detected mathematical
reconciliation errors in 7.4% of filings and categorical definition changes in 12.1% of
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period-over-period comparisons. Judgment disclosure adequacy scoring identified 127
filings (22.3% of sample subset) with below-median disclosure comprehensiveness
relative to industry benchmarks (see Table 5 for ASC 606 disclosure completeness
detection results).

Table 5. ASC 606 Disclosure Completeness Detection Results.

Fal Ti
Disclosure Fili Gaps Detection a. s.e rme
Requirement ngs Identified Accurac Positive Saved
q 8 y Rate (min)
Performance 570 107 89.3% 11.8% 16.4
Obligation
Revenue 570 195 93.8% 8.2% 14.7
Disaggregation
Contract Balances 570 84 91.7% 9.4% 12.1
Transaction Price -, 63 87.9% 13.6% 18.9
Allocation
Significant 570 127 78.4% 18.7% 213
Judgment
Remaining 570 71 94.4% 7.1% 11.8
Obligations
Total/Average 570 647 89.3% 11.5% 15.9

Performance metrics for intelligent checklist validation of revenue recognition
disclosures across six key requirement categories.

4.3. Practical Application Scenario Discussion
4.3.1. Integration into Disclosure Management Workflow

Practical deployment considerations center on seamless integration with established
disclosure management platforms. The detection system architecture supports multiple
integration approaches. APIl-based integration enables direct connection between
validation engines and platforms like Workiva, automatically processing filing drafts as
preparers complete sections. Standalone validation is an alternative deployment model in
which companies export completed filing drafts for batch processing [15].

Positioning as a reviewer assistance tool rather than an autonomous decision-making
system proved critical for user acceptance. The optimal design presents detected
discrepancies, ranked by severity, along with specific evidence explaining why flagged
content warrants review.

4.3.2. Limitations and Applicability Boundaries

Industry-specific considerations substantially affect detection effectiveness. Financial
services companies face the most pronounced adaptation requirements due to specialized
regulatory frameworks and complex financial instruments. Validation rules developed
for industrial companies achieved only 76% precision when applied to financial services
filings without sector-specific calibration.

Handling subjective judgment matters represents a fundamental limitation of
automated validation approaches. Disclosure decisions frequently require professional
judgment in assessing materiality and determining the appropriateness of qualitative
characterization. Algorithms can identify inconsistencies relative to benchmarks but
cannot definitively determine whether judgment-based disclosure choices reflect
professionally appropriate evaluations.

This figure presents a longitudinal economic analysis of implementing the
automated disclosure validation system within corporate disclosure management
workflows over a three-year operational period (as shown in Figure 3). The visualization
tracks both implementation costs (including system integration, training, and
maintenance expenses) and quantifiable benefits (primarily measured through reduced
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manual review hours, decreased error-related restatement costs, and improved disclosure
quality metrics). The temporal dimension allows stakeholders to identify the break-even
point where cumulative benefits exceed initial investment costs, while also demonstrating
the trajectory of return on investment as the system matures and adoption deepens across
the organization. The figure plots implementation costs and quantifiable benefits over
time, highlighting the break-even point and key rollout milestones. This cost-benefit
framework is particularly valuable for CFOs and financial reporting managers evaluating
the business case for adopting Al-driven validation technologies within their disclosure
preparation processes, addressing both immediate resource-allocation concerns and a
long-term strategic value proposition.

Summary (36 months):

Total Costs: $312K
Total Benefits:

Net Benefit:
ROI:

18

Time (Months)

- Cumulative Costs —e— Cumulative Net Benefit
- Cumulative Benefits -==- Break-Even Point

Figure 3. Implementation Cost-Benefit Analysis Over 36-Month Period.

5. Conclusion and Future Work
5.1. Research Summary
5.1.1. Major Findings and Contributions

This research developed and validated a comprehensive deep learning approach for
automated detection of disclosure discrepancies in SEC filings, achieving accuracy levels
that enable practical deployment. The methodological innovations center on three
integrated components: cross-period text alignment algorithms optimized for financial
document structure, XBRL tag validation that extends beyond mechanical rule-checking,
and intelligent accounting standards checklists that automate completeness verification.

Empirical validation across 2,847 SEC filings demonstrated detection accuracy of 94.3%
for cross-period narrative discrepancies and 91.7% for XBRL tagging errors. The practical
significance is shown by a 67% reduction in manual review time while maintaining high
precision. These efficiency gains translate to cost savings averaging $127,000 per annual
reporting cycle for mid-cap companies.

5.1.2. Practical Implications

Public company finance departments can integrate validation capabilities into
existing disclosure preparation workflows, catching errors before SEC staff examination.
Five pilot implementations achieved a 73% reduction in disclosure-related SEC comment
letters during subsequent filing periods. Audit firms can use disclosure accuracy detection
as an analytical procedure to screen for misstatements systematically. Enhanced
disclosure accuracy ultimately advances the core SEC mission of investor protection and
the maintenance of capital market integrity.
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5.2. Research Limitations
5.2.1. Data and Methodological Limitations

Sample composition focused on U.S. publicly traded companies filing under SEC
requirements, limiting generalization to private companies or foreign issuers. Historical
data validation inherently differs from real-time detection, where forward-looking
information and draft document status introduce uncertainties.

The ground-truth annotation process required expert judgment about disclosure
adequacy, and reasonable professionals might disagree. An inter-annotator agreement of
0.83 indicates substantial consensus, while acknowledging residual subjectivity.

5.2.2. Technical Boundaries

Deep semantic understanding remains challenging for complex financial narratives
involving subtle implications. Current NLP capabilities excel at identifying factual
inconsistencies but struggle with the nuanced interpretation of management judgment.

Cross-language applicability faces substantial obstacles, including different
accounting standards and jurisdiction-specific requirements. The current U.S. GAAP-
focused implementation would require extensive adaptation for IFRS-based reporting.

5.3. Future Research Directions
5.3.1. Technical Improvement Directions

Large language models with hundreds of billions of parameters demonstrate
impressive capabilities for complex reasoning and contextual interpretation that could
substantially enhance disclosure detection. Future research should investigate how
models like GPT-4 and domain-adapted variants can improve nuanced semantic
understanding.

Real-time disclosure monitoring represents a natural evolution from retrospective
validation, enabling continuous quality assessment as preparers draft filing sections.
Streaming architectures that process incremental updates could provide immediate
feedback on emerging inconsistencies.

5.3.2. Application Extension Directions

Environmental, Social, and Governance (ESG) disclosure accuracy detection
represents a high-priority extension as sustainability reporting regulations evolve
globally. SEC climate-related disclosure rules adopted in 2024 remain subject to ongoing
litigation and regulatory developments, which continue to drive demand for ESG
disclosure quality assurance. Cybersecurity disclosure compliance verification addresses
the emerging regulatory focus following the SEC cybersecurity disclosure rules, effective
December 2023, which require incident reporting within 4 business days. Continuous
disclosure monitoring beyond periodic reporting could extend detection capabilities to
Form 8-K current reports and proxy statements.
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