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Abstract: Medical image analysis faces persistent challenges in acquiring expert annotations due to 

high costs and specialized expertise requirements. Self-supervised learning offers a promising 

solution by learning representations from unlabeled data. This paper introduces an anatomy-aware 

contrastive pre-training framework that exploits spatial consistency and anatomical structure priors 

inherent in medical images. The proposed approach integrates contrastive learning with anatomical 

constraints, enabling effective knowledge transfer across CT, MRI, and X-ray modalities. Through 

comprehensive experiments on multiple diagnostic tasks, the framework demonstrates superior 

label efficiency, achieving competitive performance with only 10% of labeled data compared to fully 

supervised baselines. The cross-modal evaluation reveals consistent improvements of 8.3% in 

classification accuracy and 6.7% in segmentation Dice scores. These results validate the effectiveness 

of incorporating anatomical priors into self-supervised learning pipelines for medical imaging 

applications. 
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1. Introduction 

1.1. Clinical Challenges in Medical Image Annotation 

1.1.1. High Cost and Time Requirements for Expert Labeling 

Medical imaging generates massive volumes of data daily in clinical practice, with 

modern hospitals producing terabytes of radiological scans requiring interpretation. The 
annotation process demands substantial time investment from radiologists, who are 
under increasing workload pressure. A single chest CT scan containing 300-500 slices may 

require 30-60 minutes for detailed annotation, while complex abdominal scans demand 
even longer review periods. Academic medical centers report annotation costs ranging 

from $50 to $200 per case, depending on complexity and required expertise level [1]. 

1.1.2. Inter-observer Variability in Diagnostic Annotations 

Diagnostic interpretation is inherently subjective, with agreement rates varying 
significantly across pathology types and imaging modalities. Studies report Cohen's 

kappa coefficients ranging from 0.4 to 0.7 for everyday radiological tasks, indicating 
moderate agreement. Subtle pathological features, such as early-stage lung parenchymal 

nodules or microbleeds on brain MRI, pose particular challenges for consistent annotation. 
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Discriminative learning approaches that combine contrastive, restorative, and adversarial 

objectives show promise for addressing these annotation challenges [2]. 

1.1.3. Data Scarcity in Rare Disease Cases 

Rare diseases affect small patient populations, leading to limited training data. Many 
conditions occur with frequencies below 1:10,000, making it impractical to assemble large, 

annotated datasets. The combination of small sample sizes and high annotation costs 
creates a critical bottleneck for developing automated diagnostic assistance tools targeting 

uncommon pathologies. Robust self-supervised pre-training methods demonstrate 
particular value in these low-data regimes [3]. 

1.2. Self-Supervised Learning Paradigms in Medical Imaging 

1.2.1. Contrastive Learning Approaches 

Contrastive learning has emerged as a dominant paradigm for learning visual 

representations without explicit labels. These methods construct positive and negative 
pairs via data augmentation, training encoders to maximize agreement across views of 
the same instance while maintaining separation from other instances. Comprehensive 

systematic reviews highlight contrastive learning as particularly effective for medical 
imaging, where anatomical structures provide natural consistency signals across 

augmented views [4]. 

1.2.2. Masked Autoencoder Methods 

Masked autoencoders adopt a reconstruction-based approach, randomly masking 
portions of input images and training networks to predict missing content. Large-scale 

implementations demonstrate that self-supervised vision models trained via graph-
matching formulations can leverage anatomical correspondences across diverse medical 
imaging datasets [5]. 

1.2.3. Limitations of Generic SSL for Medical Images 

Standard self-supervised learning techniques developed for natural images 
encounter significant challenges when applied to medical imaging domains. Generic 

augmentation strategies may introduce unrealistic transformations that violate biological 
constraints. Continual self-supervised learning frameworks address these challenges by 
enabling sequential training across multiple medical modalities while preventing 

catastrophic forgetting [6]. 

1.3. Research Motivation and Contributions 

1.3.1. Exploiting Anatomical Structure Priors 

Human anatomy follows predictable organizational patterns that remain consistent 
across individuals. Organs maintain stable spatial relationships to one another, with the 

heart consistently positioned between the lungs and the liver, which is reliably located in 
the right upper quadrant of the abdomen. Systematic comparisons reveal that 

incorporating these anatomical priors substantially improves semi-supervised and self-
supervised learning performance across diverse medical image classification tasks [7]. 

1.3.2. Proposed Anatomy-Aware Framework 

This work introduces a novel anatomy-aware contrastive pre-training framework 

explicitly incorporating spatial consistency constraints and anatomical structure priors. 
The architecture combines modality-specific encoders with a shared representation space, 

facilitating knowledge transfer across CT, MRI, and X-ray imaging. Comprehensive 
reviews of predictive and contrastive self-supervised methods for medical images inform 
the design of these anatomical constraints [8]. 
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1.3.3. Modular Framework Design and Minimal Configuration 

The proposed framework adopts a modular design philosophy where components 

can be selectively enabled based on computational budget and data availability: 
Core (Required) Components: 
1. Anatomy-aware augmentation (preserves anatomical validity) 

2. Spatial consistency loss (enforces landmark correspondence) 
3. Basic contrastive learning objective 

Optional Enhancement Modules: 
4. Multi-scale feature pyramid (+1.8 points, +15% training time) 
5. ROI attention mechanism (+1.3 points, +8% inference time) 

6. Triplet loss metric learning (+1.1 points, +12% training time) 
7. Cross-modal alignment (+2.1 points, requires multi-modal data) 

Minimal Deployment Configuration: 
In resource-constrained scenarios, the framework can be simplified to Components 

1-3 only, achieving 82.1% accuracy (vs. 87.3% with the complete model) with 40% faster 

training. Section 4.6 ablation studies quantify each module's contribution. 

1.3.4. Cross-Modal Evaluation Strategy 

The evaluation protocol assesses pre-trained representations across multiple 
downstream tasks spanning different imaging modalities and disease types. CT datasets 

include lung nodule classification and abdominal organ segmentation tasks. MRI 
evaluation encompasses brain tumor segmentation and cardiac structure delineation. X-

ray experiments test pneumonia detection and bone fracture identification. 

2. Related Work 

2.1. Self-Supervised Learning in Computer Vision 

2.1.1. Momentum Contrast and SimCLR 

Momentum Contrast (MoCo) pioneered the use of dynamic dictionaries and 
momentum encoders for contrastive learning. SimCLR simplified the contrastive learning 

pipeline by removing memory banks and relying on large batch sizes to provide negative 
samples. Both approaches have influenced subsequent developments in self-supervised 
learning. Masked autoencoder pre-training methods adapted from these foundations 

show particular effectiveness for medical image classification and segmentation tasks [9]. 

2.1.2. Vision Transformers and Masked Autoencoders 

Vision Transformers (ViT) adapted the transformer architecture from natural 
language processing to image recognition tasks. Masked Autoencoders for Vision (MAE) 

applied BERT-style masking to images, removing random patches and training models to 
reconstruct missing content. Volume contrastive learning frameworks leverage these 

principles for 3D medical image analysis, exploiting spatial context within volumetric 
data [10]. 

2.2. SSL Applications in Medical Imaging 

2.2.1. Contrastive Learning for Radiology Images 

Contrastive methods adapted for radiology data incorporate domain-specific 

augmentation strategies preserving anatomical validity. Multi-Instance Contrastive 
Learning constructs positive pairs from different regions within the same patient scan. 

Granular alignment algorithms using masked contrastive learning enhance the 
representation quality of foundation models for radiographic reports by establishing fine-
grained correspondences between image regions and textual descriptions [11]. 

2.2.2. Pretext Tasks for 3D Medical Volumes 

Three-dimensional medical imaging introduces unique opportunities for self-
supervised learning through volumetric pretext tasks. Rotation prediction across axial, 
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coronal, and sagittal planes provides orientation-aware representations. Recent work 

demonstrates state-of-the-art performance with approximately 100 labeled training 
samples per class, validating the label efficiency of self-supervised approaches [12]. 

2.2.3. Multi-Modal Representation Learning 

Medical diagnosis frequently integrates information from multiple imaging 

modalities. Cross-modal contrastive learning aligns representations from different 
modalities by treating the same-patient scans as positive pairs. Divergence encoders with 

knowledge-guided contrastive learning enhance medical visual representation by 
incorporating domain-specific medical knowledge into the learning process [13]. 

2.3. Anatomical Prior Integration 

2.3.1. Spatial Consistency Constraints 

Anatomical structures maintain predictable spatial arrangements that self-

supervised learning can exploit. Relative position prediction tasks train models to 
determine spatial relationships between image regions. Supervised masked autoencoders 
craft masking strategies specifically designed for medical image classification, ensuring 

masked regions respect anatomical boundaries [14]. 

2.3.2. Organ-Aware Feature Learning 

Organ-specific feature learning recognizes that different anatomical structures 
exhibit distinct visual characteristics, requiring specialized feature-extraction strategies. 

Hierarchical feature pyramids enable simultaneous processing at multiple scales. 
Comprehensive benchmarks evaluate the robustness, generalizability, and multi-domain 

impact of self-supervised learning across diverse medical imaging scenarios [15]. 

2.3.3. Cross-Modal Anatomical Alignment 

Different imaging modalities visualize the same anatomical structures through 
distinct physical principles. CT provides excellent bone contrast and spatial resolution, 

while MRI offers superior soft tissue differentiation. Aligning representations across these 
modalities requires handling differences in dimensionality, resolution, and contrast 

properties. 

3. Methodology 

3.1. Problem Formulation and Framework Overview 

3.1.1. Notation and Task Definition 

The framework operates on a collection of unlabeled medical images D = {x_i} where 
i = 1, ..., N spanning multiple modalities M = {CT, MRI, X-ray}. The self-supervised pre-
training objective learns an encoder function f_θ: X → R^d that maps input images to d-

dimensional feature representations. During downstream task fine-tuning, a task-specific 
head g_φ: R^d → Y maps learned features to prediction space Y. 

3.1.2. Overall Architecture Design 

The architecture consists of three primary components. Modality-specific encoders 
𝑓𝑚 extract initial features tailored to each imaging type. A shared feature projector 

ℎ𝜓maps modality-specific features into a common d-dimensional embedding space. The 

contrastive learning framework operates in this shared space, computing similarities 
between representations and optimizing the embedding structure using anatomically 

informed loss functions, with detailed network architecture specifications summarized in 
Table 1. 
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Table 1. Network Architecture Specifications. 

Component Configuration Parameters 

Modality Encoders ResNet-50 backbone 25.6M per modality 

Feature Dimension Embedding space d = 512 

Projection Head 3-layer MLP [2048, 2048, 512] 

Temperature Contrastive loss τ = 0.07 

Batch Size Training 256 (distributed) 

Augmentation Spatial transforms Rotation ±15°, Scale ±10% 

Augmentation Intensity HU window: [-160, 240] 

Training Epochs Pre-training phase 200 epochs 

3.2. Anatomy-Aware Contrastive Pre-training 

3.2.1. Spatial Consistency Modeling 

Anatomical structures maintain consistent spatial relationships across patients, 

providing strong supervisory signals for representation learning. The spatial consistency 
module computes anatomical landmarks through a lightweight detection network. Given 

an input image x, landmark coordinates L(x) = {l_1, ..., l_K} identify key anatomical 
positions. The spatial consistency loss L_spatial enforces that corresponding landmarks 
across augmented views maintain proportional distances: L_spatial = sum_ {I, j} ||v_ij(x) 

- v_ij(T(x)) ||^2, where T represents an augmentation transformation. 
We train the landmark detector on a small annotated subset (independent from 

downstream labels) and then freeze it during pre-training. This introduces a limited 
annotation cost (only landmark keypoints), which is substantially smaller than whole 
pixel/diagnosis labeling and is reported in the experimental appendix. 

3.2.2. Anatomical Structure-Guided Augmentation 

Data augmentation strategies must preserve anatomical plausibility while 
introducing sufficient variation. The augmentation pipeline implements a hierarchy of 

transformations respecting physical and biological constraints. Spatial augmentations 
include random rotations within ±15 degrees, translations up to 10% of image dimensions, 
and anisotropic scaling between 0.9 and 1.1. Notably, horizontal flipping is selectively 

applied only to anatomically symmetric imaging configurations to preserve organ 
laterality information. Intensity transformations adjust Hounsfield Unit windows for CT 

scans and normalize MRI signal intensities. Anatomy-aware cropping selects regions 
containing complete anatomical structures rather than arbitrary rectangular patches. 

This figure 1 illustrates the multi-stage augmentation process applied to medical 

images. The diagram shows a flowchart-style layout with five main stages arranged 
horizontally. Stage 1 displays an original chest CT slice showing clear lung fields and 

mediastinal structures. Stage 2 demonstrates spatial transformations with multiple 
augmented versions arranged in a 2x2 grid, including rotated, scaled, and translated 
variants with overlaid transformation vectors. Stage 3 shows intensity adjustments 

through side-by-side comparisons, with histograms below each image showing shifts in 
the Hounsfield Unit distribution. Stage 4 depicts elastic deformation using a deformation 

grid overlay on the anatomical image, with color-coded displacement field magnitudes 
(blue to red, low to high). Stage 5 presents anatomy-aware cropping with bounding boxes 
highlighting detected organ regions and crop window selection guided by anatomical 

completeness scores. All images maintain a consistent scale at 512x512 pixels and include 
axis labels indicating anatomical orientation (A-P, L-R, S-I). 
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Figure 1. Anatomical Structure-Guided Augmentation Pipeline. 

3.2.3. Multi-Scale Feature Extraction 

Medical diagnosis requires analyzing structures spanning multiple spatial scales, 
from millimeter-sized nodules to centimeter-scale organs. The encoder implements a 

feature pyramid network extracting representations at four resolution levels: {1/4, 1/8, 1/16, 
1/32} of the input dimensions. Each pyramid level uses residual blocks with increasing 
channel dimensions: {64, 128, 256, 512} channels, respectively. Multi-scale contrastive 

learning applies the contrastive objective independently at each pyramid level, then 
combines losses via weighted summation. 

3.2.4. Contrastive Loss with Anatomical Constraints 

The core contrastive objective encourages similar representations for augmented 

views of the same image while separating representations from different images. The 
InfoNCE loss computes: L_contrast = -log [exp (sim (z_i, z_i+) / τ) / sum over k of exp (sim 

(z_i, z_k) / τ)] where z_i represents the feature representation, z_i+ denotes the positive 
pair, τ controls temperature, and sim (·, ·) computes cosine similarity. Anatomical 
constraints augment this basic formulation through structure-aware negative sampling 

and landmark-guided similarity weighting. 

3.3. Cross-Modal Alignment Strategy 

3.3.1. Modality-Specific Encoders 

Different imaging modalities exhibit distinct statistical properties requiring 
specialized feature extraction. CT images use Hounsfield units to represent physical tissue 

density. MRI signal intensities depend on acquisition protocols and lack absolute 
calibration. X-ray projections collapse 3D anatomy into 2D representations. Each modality 

encoder implements a ResNet-50 backbone tailored to the specific input characteristics. 
For CT volumes, we adopt a 2.5D processing approach, stacking 64 consecutive axial slices 
along the channel dimension and feeding them to a modified 2D ResNet-50. The first 

convolutional layer is adapted to accept 64-channel input (kernel size 7×7×64 instead of 
7×7×3), while all subsequent layers remain identical to standard 2D ResNet-50 architecture. 

This 2.5D strategy balances 3D context modeling with computational efficiency, avoiding 
the 1.5× increase in parameters and the 3× increase in memory footprint of full 3D 
convolutions, with detailed modality-specific encoder configurations summarized in 

Table 2. 

Table 2. Modality-Specific Encoder Configurations. 

Modality 
Input 

Format 
Preprocessing Encoder Modifications 

CT 
Single 

channel 

Pre-training HU window: 

[-160, 240] (soft-tissue, 

general-purpose) 

Task-specific fine-tuning: 

Lung [-1000, 400] / Liver 

[-160, 240] 

2D ResNet-50 with 2.5D input 

(64-slice stack treated as input 

channels; only conv1 modified) 
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MRI 
Multi-

sequence 
Instance normalization 

3-channel input incorporating 

T1, T2, and FLAIR sequences 

X-ray 
Grayscale 

2D 

CLAHE application and 

resolution set to 

1024×1024 

Standard 2D convolutions 

CT 

(Lung) 

Single 

channel 

Lung window [-1500, -

400] 

Attention mechanism applied 

specifically on lung fields 

MRI 

(Brain) 

Multi-

sequence 
Skull stripping 

ROI (Region of Interest) focus 

on brain parenchyma 

Note: For 3D CT volumes, we adopt a 2.5D processing strategy where 64 consecutive 

axial slices are stacked as input channels to a modified ResNet-50. This is implemented as 
a standard 2D ResNet-50 with the first convolutional layer modified to accept 64-channel 

input (instead of 3-channel RGB). The "64-slice stack" effectively treats depth as a set of 
channels. Parameter count is approximately 25.75M (standard ResNet-50 is ≈ 25.56M; 
modifying conv1 to accept 64 input channels adds ≈ 0.19M parameters: 64 × 64 × 7 × 7 vs. 

64 × 3 × 7 × 7). This is NOT a true 3D-ResNet, which would have ~33M parameters. 
For MRI, we use a standard 2D ResNet-50 (23.5M parameters) to process single-slice 

axial images. 
For X-ray, we use a standard 2D ResNet-50 (23.5M parameters) trained on 2D 

projection images. 

3.3.2. Shared Representation Space Construction 

Modality-specific features map into a common embedding space, enabling cross-
modal comparisons and knowledge transfer. The projection head h_ψ consists of a three-
layer MLP with dimensions [2048, 2048, 512]. The final 512-dimensional embeddings are 

L2-normalized, projecting representations onto the unit hypersphere, where cosine 
similarity provides a natural distance metric. 

3.3.3. Cross-Modal Contrastive Objectives 

IMPORTANT NOTE: Our pre-training dataset (described in Section 4.1.1) does not 
contain paired multi-modal scans from the same patients. Therefore, we cannot directly 
construct "same-patient cross-modal pairs" as positive pairs. Instead, we adopt a pseudo-

pairing strategy based on anatomical correspondence: 
Pseudo-Cross-Modal Positive Pair Construction: 

1) Anatomy-based pseudo-pairing: We use automated anatomical landmark 
detection to establish correspondences. For example, a CT chest scan and an X-
ray chest image are considered pseudo-positive pairs if both contain detected 

landmarks for "tracheal bifurcation", "aortic arch", and "cardiac apex" within 
similar normalized image coordinates (Euclidean distance < 0.15 after canonical 

resizing). We treat this as a weak heuristic and apply it as a low-weight 
regularization term rather than a strict geometric correspondence. We 
additionally report a threshold sensitivity check (e.g., 0.10/0.15/0.20) in the 

appendix. 
2) Shared anatomical structure labels: For datasets with organ/tissue segmentation 

annotations (e.g., LiTS provides liver/tumor masks; BraTS provides tumor sub-
region masks), images from different modalities depicting the same organ type 
(e.g., both showing "left lung") are treated as weak positive pairs with reduced 

weight (0.5× the standard positive pair loss contribution). 
3) Curriculum weighting: Cross-modal contrastive alignment is introduced 

gradually. For the first 50 epochs, we apply only within-modality contrastive 
learning (λ_cross = 0). From epochs 51-100, we linearly increase λ_cross from 0 
to 0.3. From epoch 101 onwards, λ_cross = 0.3 remains fixed. 

Alternative interpretation: If readers prefer, our "cross-modal contrastive learning" 
can be viewed as "multi-modal joint embedding" where different modalities share a 

common representation space, but positive pairs are primarily within-modality (same-
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image augmentations), with cross-modal alignment serving as a regularization term 

encouraging anatomically similar structures to have similar embeddings regardless of 
modality. 

Our cross-modal alignment strategy uses pseudo-positive pairs based on anatomical 

correspondence rather than true paired data. Curriculum learning gradually introduces 
cross-modal alignment as training progresses. Early training emphasizes within-modality 

contrastive learning, allowing encoders to develop modality-specific features. Curriculum 
learning gradually introduces cross-modal alignment as training progresses. Early 
training emphasizes within-modality contrastive learning, allowing encoders to develop 

modality-specific features. 

3.4. Fine-Grained Pathological Feature Learning 

3.4.1. Region-of-Interest Localization 

Pathological features often occupy small image regions requiring focused attention 
for accurate detection. The ROI localization module generates attention maps highlighting 

potential abnormality locations. A lightweight segmentation network operating on 
intermediate encoder features produces spatial attention scores indicating the probability 

of clinical relevance at each location. 

3.4.2. Pathological Pattern Discrimination 

Distinguishing pathological from normal anatomical variations requires learning 
subtle visual differences. The discrimination module implements a metric-learning 

approach in which embeddings cluster by pathology type. Triplet loss encourages 
embeddings to satisfy margin constraints between anchor-positive and anchor-negative 

pairs. 

3.5. Training Strategy and Implementation 

3.5.1. Two-Stage Training Protocol 

Pre-training proceeds in two distinct phases. Stage one focuses on anatomy-aware 
representation learning using large unlabeled datasets. Training uses the Adam optimizer 

with a learning rate of 1e-4, weight decay of 1e-6, and a cosine annealing schedule over 
200 epochs. Stage two introduces task-specific fine-tuning on labeled downstream 
datasets with a reduced learning rate of 1e-5. 

3.5.2. Hyperparameter Configuration 

An extensive hyperparameter search identifies optimal configurations that balance 
representation quality and computational efficiency. The temperature parameter τ in the 
contrastive loss requires careful tuning; values between 0.05 and 0.1 yield the best results. 

Anatomical constraint weights are optimized via a grid search, with the final value 
λ_spatial = 0.1, with the complete hyperparameter search results summarized in Table 3. 

Table 3. Hyperparameter Search Results. 

Parameter 
Search 

Range 

Optimal 

Value 
Validation Impact 

Temperature (τ) [0.03, 0.15] 0.07 Baseline performance 

Spatial weight (λ) [0.05, 0.5] 0.1 +2.3% accuracy 

Feature dimension (d) [128, 1024] 512 Best efficiency/performance 

Batch size [64, 1024] 256 +4.1% with larger batches 

Learning rate [1e-5, 1e-3] 1e-4 Stable convergence 

Weight decay [1e-7, 1e-4] 1e-6 Prevents overfitting 
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3.5.3. Data Augmentation Pipeline 

The augmentation pipeline implements a probabilistic approach where 

transformations apply with specified probabilities. Spatial augmentations include 
rotation (p = 0.5), horizontal flip (p = 0.3), scaling (p = 0.4), and elastic deformation (p = 
0.3). Horizontal flipping is only applied to anatomically symmetric views (e.g., chest X-

ray) and is disabled for laterality-sensitive CT/MRI tasks. Intensity augmentations 
encompass brightness adjustment (p = 0.5), contrast modification (p = 0.5), and Gaussian 

noise addition (p = 0.2). Sequential composition applies transformations in fixed order: 
spatial → intensity → cutout. 

4. Experiments and Results 

4.1. Experimental Setup 

4.1.1. Datasets and Pre-processing 

Pre-training uses a diverse multimodal dataset that aggregates public repositories 
and institutional data sources.  

CT data: We combined 888 chest CT scans from LUNA16 (Grand Challenge 2016) 
with 131 abdominal CT volumes from LiTS (Liver Tumor Segmentation Challenge), plus 

4,237 institutional chest CT scans collected under IRB approval (Protocol #2019-ME-0124), 
totaling 5,256 CT volumes. 

MRI data: We aggregated 369 brain MRI exams from the BraTS 2020 challenge with 

527 institutional brain and cardiac MRI scans (under the same IRB protocol), totaling 896 
MRI exams. 

X-ray data: The X-ray corpus includes 112,120 frontal chest radiographs from 
publicly available CheXpert (191,027 images, subsampled for balance) and MIMIC-CXR-
JPG (227,835 images, subsampled). To maintain consistency with the CT/MRI scale and 

computational feasibility, we randomly sampled 112,120 X-ray images for pre-training. 
Total pre-training dataset: 5,256 CT, 896 MRI, and 112,120 X-ray = 118,272 images 

across three modalities. Institutional data collection: Our institution contributed de-
identified imaging data from routine clinical practice between 2018 and 2021. All data use 
was approved by the University Institutional Review Board (IRB Protocol #2019-ME-0124). 

Patient consent was waived for this retrospective analysis of de-identified data. All 
institutional data underwent quality control to remove incomplete scans, motion artifacts, 

and cases with missing metadata. CT preprocessing resamples volumes to an isotropic 
1mm spacing and applies standardized windowing. For pre-training, we use a general 
soft-tissue window [-160, 240] HU (width=400, level=40) that captures both lung 

parenchyma and mediastinal structures, enabling the model to learn representations 
across diverse anatomical regions. This window setting is applied consistently across all 

CT data during pre-training. 
For downstream task-specific fine-tuning, we adapt windows to clinical 

requirements: 
- Lung nodule classification (LIDC-IDRI): Lung window [-1000, 400] HU 
- Liver tumor segmentation (LiTS): Abdominal soft-tissue window [-160, 240] HU 

- COVID pneumonia detection (COVIDx CT subset if used): Lung window [-1000, 
400] HU MRI preprocessing includes N4 bias field correction, registration to MNI152 

standard space, and intensity normalization. 
Downstream evaluation employs six benchmark datasets: COVIDx for chest X-ray 

pneumonia classification (13,975 images), LIDC-IDRI for lung nodule malignancy 

prediction (1,018 cases), BraTS 2020 for brain tumor segmentation (369 patients), ACDC 
for cardiac MRI segmentation (100 patients), LiTS for liver tumor segmentation (131 cases), 

and RSNA Bone Age (12,611 images). 

4.1.2. Evaluation Metrics 

Classification tasks report accuracy, balanced accuracy, AUROC, and AUPRC. 
Segmentation tasks use the Dice similarity coefficient: Dice = 2|P ∩ G| / (|P| + |G|), where 
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P and G denote the predicted and ground-truth regions, respectively. Label efficiency 

evaluation varies with the training set size, ranging from 1% to 100% of available labels. 

4.1.3. Baseline Methods and Implementation Details 

Comparison baselines include ImageNet-supervised pre-training, random 
initialization, SimCLR, MoCo-v2, and MAE. Implementation uses PyTorch 1.12 with 

CUDA 11.6 on NVIDIA A100 GPUs, with detailed baseline method configurations and 
training settings summarized in Table 4. 

Table 4. Baseline Method Configurations. 

Method Architecture Pre-training Data Key Parameters 

ImageNet ResNet-50 ImageNet-1K Transfer learning 

Random Init ResNet-50 None Trained from scratch 

SimCLR ResNet-50 Medical imaging 

τ tuned in [0.03, 0.15] 

(best 0.07), batch=256 

(distributed) 

MoCo-v2 ResNet-50 Medical imaging K=65536, m=0.999 

MAE ViT-Base Medical imaging Masking ratio=0.75 

Ours ResNet-50 Multi-modal Anatomy-aware 

4.2. Pre-training Performance Analysis 

4.2.1. Convergence Characteristics 

Training curves reveal distinct convergence patterns across different self-supervised 
objectives. The contrastive loss decreases rapidly during initial epochs, dropping from 6.2 

to 2.8 within the first 20 epochs. Anatomical constraint losses exhibit delayed activation: 
they remain relatively constant during early training while the encoder learns basic 
features, then decrease substantially after epoch 50 as spatial understanding develops. 

4.2.2. Learned Representation Visualization 

Attention map analysis reveals that the anatomy-aware framework develops a focus 
on clinically relevant regions. Heat maps show strong activation on pathological findings, 
including lung nodules, brain lesions, and cardiac abnormalities. Feature clustering using 

k-means reveals anatomically coherent groupings. CT lung images cluster distinctly from 
abdominal scans with 94% purity. 

This comprehensive figure 2 comprises four subpanels arranged in a 2×2 grid. The 
top-left panel displays training convergence curves with epoch number (0-200) on the x-
axis and loss values (0-7) on the y-axis. Three curves show different loss components: total 

loss (solid blue line), contrastive loss (dashed orange line), and spatial consistency loss 
(dotted green line). The top-right panel presents t-SNE embeddings at three time points 

(epochs 50, 100, 200) arranged horizontally. Each t-SNE plot shows 2D projections of 
learned representations with points colored by modality (CT in blue, MRI in red, X-ray in 
green) and shaped by anatomical region. The bottom-left panel shows attention map 

comparisons using a 3 rows × 4 columns grid, representing different methods (Baseline 
SimCLR, Proposed Method, Ground Truth). Attention maps use a hot colormap overlaid 

on grayscale medical images. The bottom-right panel presents quantitative clustering 
metrics, with grouped bar charts comparing intra- and inter-cluster distances across 
training epochs. 
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Figure 2. Embedding Space Visualization and Convergence Analysis. 

4.3. Downstream Task Evaluation 

4.3.1. CT Image Classification Results 

Lung nodule malignancy classification on LIDC-IDRI demonstrates substantial 
performance gains. The proposed method achieves 89.3% accuracy and 0.942 AUROC, 

outperforming ImageNet pre-training (84.7% accuracy, 0.901 AUROC) and random 
initialization (79.2% accuracy, 0.863 AUROC). When reducing labeled data to 10%, the 

proposed method maintains 84.1% accuracy while ImageNet drops to 76.3%. 

4.3.2. MRI Segmentation Performance 

Brain tumor segmentation on BraTS 2020 evaluates performance across multiple 
tumor sub-regions. The proposed method achieves mean Dice coefficients of 0.894, 0.836, 

and 0.781 for whole tumor, tumor core, and enhancing tumor, respectively. Cardiac MRI 
segmentation reaches a mean Dice of 0.921 and 0.897 for end-diastolic and end-systolic 
phases. 

4.3.3. X-ray Diagnosis Accuracy 

Chest X-ray pneumonia detection on COVIDx achieves 94.1% accuracy, 
distinguishing COVID-19 pneumonia from bacterial pneumonia and normal cases. 

COVID-19 sensitivity reaches 92.7% while maintaining a specificity of 96.3%, with 
detailed downstream task performance comparisons reported in Table 5. 

Table 5. Downstream Task Performance Comparison. 

Task 
Modali

ty 
Metric 

Rando

m Init 

ImageN

et 

SimCL

R 

MoC

o-v2 

MA

E 

Our

s 

Lung 

Nodule 
CT 

Accurac

y 
79.2% 84.7% 86.1% 85.8% 

84.3

% 

89.3

% 

Lung 

Nodule 
CT 

AURO

C 
0.863 0.901 0.919 0.915 0.908 0.942 

Liver 

Tumor 
CT Dice 0.847 0.879 0.891 0.886 0.882 0.913 

Brain 

Tumor 
MRI 

Dice 

(WT) 
0.852 0.871 0.883 0.879 0.876 0.894 
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Brain 

Tumor 
MRI 

Dice 

(TC) 
0.779 0.803 0.821 0.815 0.809 0.836 

Brain 

Tumor 
MRI 

Dice 

(ET) 
0.728 0.750 0.767 0.761 0.756 0.781 

Cardiac 

Seg 
MRI 

Dice 

(LV) 
0.893 0.908 0.914 0.911 0.905 0.921 

Pneumon

ia 
X-ray 

Accurac

y 
88.3% 91.2% 92.7% 92.4% 

91.8

% 

94.1

% 

4.4. Label Efficiency Assessment 

4.4.1. Few-Shot Learning Scenarios 

Few-shot learning experiments evaluate performance with minimal labeled data. 
Using only 5 labeled examples per class for lung nodule classification, the proposed 

method achieves 73.2% accuracy, compared to 58.7% with ImageNet pre-training and 51.3% 
with random initialization. This 14.5 percentage point improvement demonstrates 
effective knowledge transfer. 

4.4.2. Performance vs. Labeled Data Ratio 

Systematic evaluation varies the labeled data percentage from 1% to 100%. On brain 
tumor segmentation, using 10% labeled data with the proposed pre-training achieves a 

0.861 Dice coefficient, matching random initialization performance with 45% labeled data. 
This 4.5-fold data efficiency directly translates to reduced annotation burden. 

This multi-panel figure 3 presents comprehensive label efficiency analysis using a 

2×3 grid layout containing six subplots corresponding to downstream tasks: CT tasks 
(lung nodule, liver tumor), MRI tasks (brain tumor, cardiac segmentation), and X-ray tasks 

(pneumonia detection, bone age). The X-axis shows labeled data percentage (1%, 2%, 5%, 
10%, 25%, 50%, 100%) on a log scale. Y-axis displays task-appropriate performance metrics 
ranging from 0.5 to 1.0. Each subplot contains six curves representing different methods: 

Random Init (gray dash-dot line with circle markers), ImageNet (blue dashed line with 
triangle markers), SimCLR (green dotted line with square markers), MoCo-v2 (orange 

solid thin line with diamond markers), MAE (purple dashed line with pentagon markers), 
and Proposed method (red bold solid line with star markers). Shaded confidence intervals 
(95% CI) surround each curve. Critical performance thresholds are marked with 

horizontal gray dashed lines. 

 

Figure 3. Label Efficiency Analysis Across Tasks and Modalities. 
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4.5. Cross-Modal Generalization Analysis 

4.5.1. Transfer Across Imaging Modalities 

Cross-modal transfer experiments assess whether representations learned from one 
modality generalize to others. Models pre-trained exclusively on CT achieve 86.2% 

accuracy on lung nodule classification but only 81.7% when transferred to X-ray 
pneumonia detection. Multi-modal pre-training improves X-ray transfer to 88.9% 

accuracy, approaching single-modality performance of 89.7%. 

4.5.2. Domain Adaptation Capability 

Domain-shift robustness evaluates a model's performance when test distributions 
differ from the training distribution. Models trained on one institution show 4.2% 

accuracy degradation when tested on external data. The proposed pre-training reduces 
this degradation to 1.8%, demonstrating improved robustness to domain shift. 

4.6. Ablation Studies and Component-wise Validation 

We conducted comprehensive ablation experiments to validate the necessity and 

contribution of each proposed component. All ablation experiments use the lung nodule 
classification task (LIDC-IDRI) with 25% labeled data as the testbed. Baseline performance 

with all components: 87.3% accuracy, 0.928 AUROC, with the detailed ablation results of 
individual framework components summarized in Table 6. 

Table 6. Comprehensive Ablation Study of Framework Components. 

Configuratio

n 
Components Included 

Accu

racy 

AU

RO

C 

Δ 

Ac

c 

Δ 

AUR

OC 

Full Model All components below 
87.3

% 

0.92

8 
- - 

-Spatial Loss 
Remove landmark detection + spatial 

consistency loss 

84.7

% 

0.91

1 

-

2.6 

-

0.017 

-Anatomy 

Aug 

Remove anatomy-aware augmentation, 

use standard random crop 

85.4

% 

0.91

6 

-

1.9 

-

0.012 

-Multi-Scale 
Single-scale features (1/16 resolution 

only) 

85.5

% 

0.91

9 

-

1.8 

-

0.009 

-ROI 

Attention 
Remove ROI localization module 

86.0

% 

0.92

1 

-

1.3 

-

0.007 

-Triplet Loss 
Remove metric learning, use only 

contrastive 

86.2

% 

0.92

3 

-

1.1 

-

0.005 

-Cross-Modal 
Within-modality only, no cross-modal 

alignment 

85.2

% 

0.91

5 

-

2.1 

-

0.013 

Minimal 

(SimCLR-

style) 

Only basic contrastive + random 

augmentation 

82.1

% 

0.89

3 

-

5.2 

-

0.035 

Critical Analysis: 

- Spatial consistency loss is the single most crucial component (+2.6 points), 
validating the core "anatomy-aware" premise. 

- Cross-modal alignment provides meaningful benefit (+2.1 points) despite using 

pseudo-pairs rather than accurate paired data. 
- Removing ALL anatomical priors (Minimal configuration) causes -5.2 points 

degradation, demonstrating cumulative value. 
- ROI attention and triplet loss provide marginal gains (1.1-1.3 points each). These 

could be considered "optional enhancements" rather than core requirements. 

Complexity-Performance Tradeoff: 
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- Training time per epoch: Full model 47 min, Minimal 28 min (1.68× slowdown for 

5.2-point gain) 
- Inference time per image: Full model 23ms, Minimal 18ms (1.28× slowdown) 
- We conclude the added complexity is justified given label efficiency benefits (see 

Fig. 3). 

4.6.1. Impact of Anatomical Constraints 

Systematic ablation validates each component's necessity. Table 6 presents 

comprehensive results. Key findings: 
- Spatial consistency constraints: Removing reduces accuracy from 87.3% to 84.7% (-

2.6 points) 

- Anatomy-aware augmentation: Removal causes -1.9-point degradation 
- Cross-modal alignment: Contributes +2.1 points even with pseudo-pairing 

- Cumulative effect: All anatomical priors together provide +5.2 points over the 
minimal baseline 

These results validate our design choices. Spatial loss and cross-modal alignment are 

essential (> 2-point contributions). Multi-scale features, ROI attention, and triplet loss 
provide marginal improvements (1-2 points) and could be omitted in resource-

constrained scenarios. Eliminating anatomy-aware augmentation results in a 1.9 
percentage-point degradation, while removing cross-modal alignment reduces 
performance by 2.1 percentage points. 

4.6.2. Component-wise Contribution Analysis 

Multi-scale feature extraction contributes 1.8 percentage points to classification 
accuracy. Attention mechanisms add 1.3 percentage points by focusing on clinically 
relevant regions. 

4.6.3. Augmentation Strategy Effects 

Removing spatial augmentations reduces accuracy by 3.1 percentage points. 
Intensity augmentations contribute 2.4 percentage points, while cutout adds 1.6 

percentage points. Combined removal results in a 7.8 percentage-point degradation. 

5. Conclusion and Future Work 

5.1. Summary of Contributions 

5.1.1. Key Findings and Achievements 

This work introduces an anatomy-aware contrastive pre-training framework that 
effectively addresses label-efficiency challenges by explicitly integrating anatomical 
structure priors. The proposed approach achieves 89.3% accuracy in lung nodule 

classification, 0.894 Dice score in brain tumor segmentation, and 94.1% accuracy in 
pneumonia detection. Label efficiency experiments demonstrate that the framework 

requires only 22% of the typical annotation budget to achieve 95% of full-supervision 
performance. 

5.1.2. Performance Improvements Across Modalities 

Modality-specific analysis reveals consistent performance gains. CT imaging tasks 

show an average accuracy improvement of 4.6 percentage points over ImageNet pre-
training. MRI segmentation tasks achieve 0.042-0.063 Dice coefficient improvements. X-

ray classification benefits most substantially, with 3.0 percentage point accuracy gains 
over the SimCLR baseline. 

5.2. Limitations and Potential Extensions 

5.2.1. Current Constraints 

The framework requires anatomical landmark detection, introducing computational 

overhead and potential failure modes. Landmark detection accuracy degrades with severe 
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anatomical abnormalities or incomplete imaging coverage. The evaluation focuses 

primarily on classification and segmentation tasks. 

5.2.2. Scalability Considerations 

Scaling to larger datasets introduces challenges related to data management and 
computational resources. The current framework processes approximately 50,000 3D 

volumes during pre-training, requiring 10 days on 8 A100 GPUs. Memory constraints 
limit batch sizes and image resolutions. 

5.3. Future Research Directions 

5.3.1. Integration with Vision-Language Models 

Combining anatomy-aware visual representations with textual information from 

radiology reports offers promising directions for richer multi-modal learning. Vision-
language models can leverage naturally occurring image-report pairs without requiring 

explicit manual annotations. 

5.3.2. Federated Learning Applications 

Federated learning enables training on distributed hospital datasets without 
centralizing sensitive patient data. Anatomy-aware constraints provide valuable 

inductive biases for federated settings where data heterogeneity across institutions poses 
challenges. 

5.3.3. Clinical Deployment Pathways 

Translating research prototypes into clinical decision support tools requires 

addressing practical deployment challenges. Model interpretability through attention 
visualization and uncertainty quantification builds clinician trust. Regulatory approval 

processes demand rigorous validation on diverse patient populations. 
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