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Abstract: Medical image analysis faces persistent challenges in acquiring expert annotations due to
high costs and specialized expertise requirements. Self-supervised learning offers a promising
solution by learning representations from unlabeled data. This paper introduces an anatomy-aware
contrastive pre-training framework that exploits spatial consistency and anatomical structure priors
inherent in medical images. The proposed approach integrates contrastive learning with anatomical
constraints, enabling effective knowledge transfer across CT, MRI, and X-ray modalities. Through
comprehensive experiments on multiple diagnostic tasks, the framework demonstrates superior
label efficiency, achieving competitive performance with only 10% of labeled data compared to fully
supervised baselines. The cross-modal evaluation reveals consistent improvements of 8.3% in
classification accuracy and 6.7% in segmentation Dice scores. These results validate the effectiveness
of incorporating anatomical priors into self-supervised learning pipelines for medical imaging
applications.

Keywords: self-supervised learning; contrastive learning; medical image analysis; cross-modal
learning

1. Introduction
1.1. Clinical Challenges in Medical Image Annotation
1.1.1. High Cost and Time Requirements for Expert Labeling

Medical imaging generates massive volumes of data daily in clinical practice, with
modern hospitals producing terabytes of radiological scans requiring interpretation. The
annotation process demands substantial time investment from radiologists, who are
under increasing workload pressure. A single chest CT scan containing 300-500 slices may
require 30-60 minutes for detailed annotation, while complex abdominal scans demand
even longer review periods. Academic medical centers report annotation costs ranging
from $50 to $200 per case, depending on complexity and required expertise level [1].

1.1.2. Inter-observer Variability in Diagnostic Annotations

Diagnostic interpretation is inherently subjective, with agreement rates varying
significantly across pathology types and imaging modalities. Studies report Cohen's
kappa coefficients ranging from 0.4 to 0.7 for everyday radiological tasks, indicating
moderate agreement. Subtle pathological features, such as early-stage lung parenchymal
nodules or microbleeds on brain MRI, pose particular challenges for consistent annotation.
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Discriminative learning approaches that combine contrastive, restorative, and adversarial
objectives show promise for addressing these annotation challenges [2].

1.1.3. Data Scarcity in Rare Disease Cases

Rare diseases affect small patient populations, leading to limited training data. Many
conditions occur with frequencies below 1:10,000, making it impractical to assemble large,
annotated datasets. The combination of small sample sizes and high annotation costs
creates a critical bottleneck for developing automated diagnostic assistance tools targeting
uncommon pathologies. Robust self-supervised pre-training methods demonstrate
particular value in these low-data regimes [3].

1.2. Self-Supervised Learning Paradigms in Medical Imaging
1.2.1. Contrastive Learning Approaches

Contrastive learning has emerged as a dominant paradigm for learning visual
representations without explicit labels. These methods construct positive and negative
pairs via data augmentation, training encoders to maximize agreement across views of
the same instance while maintaining separation from other instances. Comprehensive
systematic reviews highlight contrastive learning as particularly effective for medical
imaging, where anatomical structures provide natural consistency signals across
augmented views [4].

1.2.2. Masked Autoencoder Methods

Masked autoencoders adopt a reconstruction-based approach, randomly masking
portions of input images and training networks to predict missing content. Large-scale
implementations demonstrate that self-supervised vision models trained via graph-
matching formulations can leverage anatomical correspondences across diverse medical
imaging datasets [5].

1.2.3. Limitations of Generic SSL for Medical Images

Standard self-supervised learning techniques developed for natural images
encounter significant challenges when applied to medical imaging domains. Generic
augmentation strategies may introduce unrealistic transformations that violate biological
constraints. Continual self-supervised learning frameworks address these challenges by
enabling sequential training across multiple medical modalities while preventing
catastrophic forgetting [6].

1.3. Research Motivation and Contributions
1.3.1. Exploiting Anatomical Structure Priors

Human anatomy follows predictable organizational patterns that remain consistent
across individuals. Organs maintain stable spatial relationships to one another, with the
heart consistently positioned between the lungs and the liver, which is reliably located in
the right upper quadrant of the abdomen. Systematic comparisons reveal that
incorporating these anatomical priors substantially improves semi-supervised and self-
supervised learning performance across diverse medical image classification tasks [7].

1.3.2. Proposed Anatomy-Aware Framework

This work introduces a novel anatomy-aware contrastive pre-training framework
explicitly incorporating spatial consistency constraints and anatomical structure priors.
The architecture combines modality-specific encoders with a shared representation space,
facilitating knowledge transfer across CT, MRI, and X-ray imaging. Comprehensive
reviews of predictive and contrastive self-supervised methods for medical images inform
the design of these anatomical constraints [8].

56



Journal of Sustainability, Policy, and Practice Vol. 2, No. 1 (2026)

1.3.3. Modular Framework Design and Minimal Configuration

The proposed framework adopts a modular design philosophy where components
can be selectively enabled based on computational budget and data availability:

Core (Required) Components:

1. Anatomy-aware augmentation (preserves anatomical validity)

2. Spatial consistency loss (enforces landmark correspondence)

3. Basic contrastive learning objective

Optional Enhancement Modules:

4. Multi-scale feature pyramid (+1.8 points, +15% training time)

5. ROI attention mechanism (+1.3 points, +8% inference time)

6. Triplet loss metric learning (+1.1 points, +12% training time)

7. Cross-modal alignment (+2.1 points, requires multi-modal data)

Minimal Deployment Configuration:

In resource-constrained scenarios, the framework can be simplified to Components
1-3 only, achieving 82.1% accuracy (vs. 87.3% with the complete model) with 40% faster
training. Section 4.6 ablation studies quantify each module's contribution.

1.3.4. Cross-Modal Evaluation Strategy

The evaluation protocol assesses pre-trained representations across multiple
downstream tasks spanning different imaging modalities and disease types. CT datasets
include lung nodule classification and abdominal organ segmentation tasks. MRI
evaluation encompasses brain tumor segmentation and cardiac structure delineation. X-
ray experiments test pneumonia detection and bone fracture identification.

2. Related Work
2.1. Self-Supervised Learning in Computer Vision
2.1.1. Momentum Contrast and SimCLR

Momentum Contrast (MoCo) pioneered the use of dynamic dictionaries and
momentum encoders for contrastive learning. SImCLR simplified the contrastive learning
pipeline by removing memory banks and relying on large batch sizes to provide negative
samples. Both approaches have influenced subsequent developments in self-supervised
learning. Masked autoencoder pre-training methods adapted from these foundations
show particular effectiveness for medical image classification and segmentation tasks [9].

2.1.2. Vision Transformers and Masked Autoencoders

Vision Transformers (ViT) adapted the transformer architecture from natural
language processing to image recognition tasks. Masked Autoencoders for Vision (MAE)
applied BERT-style masking to images, removing random patches and training models to
reconstruct missing content. Volume contrastive learning frameworks leverage these
principles for 3D medical image analysis, exploiting spatial context within volumetric
data [10].

2.2. SSL Applications in Medical Imaging
2.2.1. Contrastive Learning for Radiology Images

Contrastive methods adapted for radiology data incorporate domain-specific
augmentation strategies preserving anatomical validity. Multi-Instance Contrastive
Learning constructs positive pairs from different regions within the same patient scan.
Granular alignment algorithms using masked contrastive learning enhance the
representation quality of foundation models for radiographic reports by establishing fine-
grained correspondences between image regions and textual descriptions [11].

2.2.2. Pretext Tasks for 3D Medical Volumes

Three-dimensional medical imaging introduces unique opportunities for self-
supervised learning through volumetric pretext tasks. Rotation prediction across axial,
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coronal, and sagittal planes provides orientation-aware representations. Recent work
demonstrates state-of-the-art performance with approximately 100 labeled training
samples per class, validating the label efficiency of self-supervised approaches [12].

2.2.3. Multi-Modal Representation Learning

Medical diagnosis frequently integrates information from multiple imaging
modalities. Cross-modal contrastive learning aligns representations from different
modalities by treating the same-patient scans as positive pairs. Divergence encoders with
knowledge-guided contrastive learning enhance medical visual representation by
incorporating domain-specific medical knowledge into the learning process [13].

2.3. Anatomical Prior Integration
2.3.1. Spatial Consistency Constraints

Anatomical structures maintain predictable spatial arrangements that self-
supervised learning can exploit. Relative position prediction tasks train models to
determine spatial relationships between image regions. Supervised masked autoencoders
craft masking strategies specifically designed for medical image classification, ensuring
masked regions respect anatomical boundaries [14].

2.3.2. Organ-Aware Feature Learning

Organ-specific feature learning recognizes that different anatomical structures
exhibit distinct visual characteristics, requiring specialized feature-extraction strategies.
Hierarchical feature pyramids enable simultaneous processing at multiple scales.
Comprehensive benchmarks evaluate the robustness, generalizability, and multi-domain
impact of self-supervised learning across diverse medical imaging scenarios [15].

2.3.3. Cross-Modal Anatomical Alignment

Different imaging modalities visualize the same anatomical structures through
distinct physical principles. CT provides excellent bone contrast and spatial resolution,
while MRI offers superior soft tissue differentiation. Aligning representations across these
modalities requires handling differences in dimensionality, resolution, and contrast
properties.

3. Methodology
3.1. Problem Formulation and Framework Overview
3.1.1. Notation and Task Definition

The framework operates on a collection of unlabeled medical images D = {x_i} where
i=1, ..., N spanning multiple modalities M = {CT, MRI, X-ray}. The self-supervised pre-
training objective learns an encoder function f_0: X — R”d that maps input images to d-
dimensional feature representations. During downstream task fine-tuning, a task-specific
head g_¢: R*"d — Y maps learned features to prediction space Y.

3.1.2. Overall Architecture Design

The architecture consists of three primary components. Modality-specific encoders
fmextract initial features tailored to each imaging type. A shared feature projector
h,maps modality-specific features into a common d-dimensional embedding space. The
contrastive learning framework operates in this shared space, computing similarities
between representations and optimizing the embedding structure using anatomically
informed loss functions, with detailed network architecture specifications summarized in
Table 1.
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Table 1. Network Architecture Specifications.

Component Configuration Parameters
Modality Encoders ResNet-50 backbone 25.6M per modality
Feature Dimension Embedding space d =512

Projection Head 3-layer MLP [2048, 2048, 512]

Temperature Contrastive loss ©=0.07

Batch Size Training 256 (distributed)
Augmentation Spatial transforms Rotation +15°, Scale +10%
Augmentation Intensity HU window: [-160, 240]
Training Epochs Pre-training phase 200 epochs

3.2. Anatomy-Aware Contrastive Pre-training
3.2.1. Spatial Consistency Modeling

Anatomical structures maintain consistent spatial relationships across patients,
providing strong supervisory signals for representation learning. The spatial consistency
module computes anatomical landmarks through a lightweight detection network. Given
an input image X, landmark coordinates L(x) = {l_1, ..., 1_K} identify key anatomical
positions. The spatial consistency loss L_spatial enforces that corresponding landmarks
across augmented views maintain proportional distances: L_spatial = sum_ {I, j} I Iv_ij(x)
- v_ij(T(x)) | "2, where T represents an augmentation transformation.

We train the landmark detector on a small annotated subset (independent from
downstream labels) and then freeze it during pre-training. This introduces a limited
annotation cost (only landmark keypoints), which is substantially smaller than whole
pixel/diagnosis labeling and is reported in the experimental appendix.

3.2.2. Anatomical Structure-Guided Augmentation

Data augmentation strategies must preserve anatomical plausibility while
introducing sufficient variation. The augmentation pipeline implements a hierarchy of
transformations respecting physical and biological constraints. Spatial augmentations
include random rotations within +15 degrees, translations up to 10% of image dimensions,
and anisotropic scaling between 0.9 and 1.1. Notably, horizontal flipping is selectively
applied only to anatomically symmetric imaging configurations to preserve organ
laterality information. Intensity transformations adjust Hounsfield Unit windows for CT
scans and normalize MRI signal intensities. Anatomy-aware cropping selects regions
containing complete anatomical structures rather than arbitrary rectangular patches.

This figure 1 illustrates the multi-stage augmentation process applied to medical
images. The diagram shows a flowchart-style layout with five main stages arranged
horizontally. Stage 1 displays an original chest CT slice showing clear lung fields and
mediastinal structures. Stage 2 demonstrates spatial transformations with multiple
augmented versions arranged in a 2x2 grid, including rotated, scaled, and translated
variants with overlaid transformation vectors. Stage 3 shows intensity adjustments
through side-by-side comparisons, with histograms below each image showing shifts in
the Hounsfield Unit distribution. Stage 4 depicts elastic deformation using a deformation
grid overlay on the anatomical image, with color-coded displacement field magnitudes
(blue to red, low to high). Stage 5 presents anatomy-aware cropping with bounding boxes
highlighting detected organ regions and crop window selection guided by anatomical
completeness scores. All images maintain a consistent scale at 512x512 pixels and include
axis labels indicating anatomical orientation (A-P, L-R, S-I).
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Multi-Stage Augmentation Pipeline
Stage 1 Stage 2 Stage 3 Stage 4 Stage 5
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Figure 1. Anatomical Structure-Guided Augmentation Pipeline.

3.2.3. Multi-Scale Feature Extraction

Medical diagnosis requires analyzing structures spanning multiple spatial scales,
from millimeter-sized nodules to centimeter-scale organs. The encoder implements a
feature pyramid network extracting representations at four resolution levels: {1/4, 1/8, 1/16,
1/32} of the input dimensions. Each pyramid level uses residual blocks with increasing
channel dimensions: {64, 128, 256, 512} channels, respectively. Multi-scale contrastive
learning applies the contrastive objective independently at each pyramid level, then
combines losses via weighted summation.

3.2.4. Contrastive Loss with Anatomical Constraints

The core contrastive objective encourages similar representations for augmented
views of the same image while separating representations from different images. The
InfoNCE loss computes: L_contrast = -log [exp (sim (z_i, z_i+) / T) / sum over k of exp (sim
(z_i, z_k) / T)] where z_i represents the feature representation, z_i+ denotes the positive
pair, T controls temperature, and sim (;, -) computes cosine similarity. Anatomical
constraints augment this basic formulation through structure-aware negative sampling
and landmark-guided similarity weighting.

3.3. Cross-Modal Alignment Strategy
3.3.1. Modality-Specific Encoders

Different imaging modalities exhibit distinct statistical properties requiring
specialized feature extraction. CT images use Hounsfield units to represent physical tissue
density. MRI signal intensities depend on acquisition protocols and lack absolute
calibration. X-ray projections collapse 3D anatomy into 2D representations. Each modality
encoder implements a ResNet-50 backbone tailored to the specific input characteristics.
For CT volumes, we adopt a 2.5D processing approach, stacking 64 consecutive axial slices
along the channel dimension and feeding them to a modified 2D ResNet-50. The first
convolutional layer is adapted to accept 64-channel input (kernel size 7x7x64 instead of
7x7x3), while all subsequent layers remain identical to standard 2D ResNet-50 architecture.
This 2.5D strategy balances 3D context modeling with computational efficiency, avoiding
the 1.5x increase in parameters and the 3x increase in memory footprint of full 3D
convolutions, with detailed modality-specific encoder configurations summarized in
Table 2.

Table 2. Modality-Specific Encoder Configurations.

Modality Input Preprocessing Encoder Modifications
Format
Pre-training HU window:
Sinale [‘162;1?2% (S;’rft';f;ue’ 2D ResNet-50 with 2.5D input
CT & & purp (64-slice stack treated as input

channel  Task-specific fine-tuning:
Lung [-1000, 400] / Liver
[-160, 240]

channels; only convl modified)
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Multi- N 3-channel input incorporating
MRI sequence Instance normalization T1, T2, and FLAIR sequences
CLAHE application and
Grayscale . .
X-ray D resolution set to Standard 2D convolutions
1024x1024
CT Single Lung window [-1500, - Attention mechanism applied
(Lung) channel 400] specifically on lung fields
MRI Multi- . ROI (Region of Interest) focus
. Skull stripping ]
(Brain) sequence on brain parenchyma

Note: For 3D CT volumes, we adopt a 2.5D processing strategy where 64 consecutive
axial slices are stacked as input channels to a modified ResNet-50. This is implemented as
a standard 2D ResNet-50 with the first convolutional layer modified to accept 64-channel
input (instead of 3-channel RGB). The "64-slice stack" effectively treats depth as a set of
channels. Parameter count is approximately 25.75M (standard ResNet-50 is = 25.56M;
modifying conv1 to accept 64 input channels adds = 0.19M parameters: 64 x 64 x 7 x 7 vs.
64 x 3 x 7 x 7). This is NOT a true 3D-ResNet, which would have ~33M parameters.

For MRI, we use a standard 2D ResNet-50 (23.5M parameters) to process single-slice
axial images.

For X-ray, we use a standard 2D ResNet-50 (23.5M parameters) trained on 2D
projection images.

3.3.2. Shared Representation Space Construction

Modality-specific features map into a common embedding space, enabling cross-
modal comparisons and knowledge transfer. The projection head h_1 consists of a three-
layer MLP with dimensions [2048, 2048, 512]. The final 512-dimensional embeddings are
L2-normalized, projecting representations onto the unit hypersphere, where cosine
similarity provides a natural distance metric.

3.3.3. Cross-Modal Contrastive Objectives

IMPORTANT NOTE: Our pre-training dataset (described in Section 4.1.1) does not
contain paired multi-modal scans from the same patients. Therefore, we cannot directly
construct "same-patient cross-modal pairs" as positive pairs. Instead, we adopt a pseudo-
pairing strategy based on anatomical correspondence:

Pseudo-Cross-Modal Positive Pair Construction:

1) Anatomy-based pseudo-pairing: We use automated anatomical landmark
detection to establish correspondences. For example, a CT chest scan and an X-
ray chest image are considered pseudo-positive pairs if both contain detected
landmarks for "tracheal bifurcation”, "aortic arch”, and "cardiac apex" within
similar normalized image coordinates (Euclidean distance < 0.15 after canonical
resizing). We treat this as a weak heuristic and apply it as a low-weight
regularization term rather than a strict geometric correspondence. We
additionally report a threshold sensitivity check (e.g., 0.10/0.15/0.20) in the
appendix.

2)  Shared anatomical structure labels: For datasets with organ/tissue segmentation
annotations (e.g., LiTS provides liver/tumor masks; BraTS provides tumor sub-
region masks), images from different modalities depicting the same organ type
(e.g., both showing "left lung") are treated as weak positive pairs with reduced
weight (0.5x the standard positive pair loss contribution).

3) Curriculum weighting: Cross-modal contrastive alignment is introduced
gradually. For the first 50 epochs, we apply only within-modality contrastive
learning (A_cross = 0). From epochs 51-100, we linearly increase A_cross from 0
to 0.3. From epoch 101 onwards, A_cross = 0.3 remains fixed.

Alternative interpretation: If readers prefer, our "cross-modal contrastive learning"

can be viewed as "multi-modal joint embedding" where different modalities share a
common representation space, but positive pairs are primarily within-modality (same-
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image augmentations), with cross-modal alignment serving as a regularization term
encouraging anatomically similar structures to have similar embeddings regardless of
modality.

Our cross-modal alignment strategy uses pseudo-positive pairs based on anatomical
correspondence rather than true paired data. Curriculum learning gradually introduces
cross-modal alignment as training progresses. Early training emphasizes within-modality
contrastive learning, allowing encoders to develop modality-specific features. Curriculum
learning gradually introduces cross-modal alignment as training progresses. Early
training emphasizes within-modality contrastive learning, allowing encoders to develop
modality-specific features.

3.4. Fine-Grained Pathological Feature Learning
3.4.1. Region-of-Interest Localization

Pathological features often occupy small image regions requiring focused attention
for accurate detection. The ROl localization module generates attention maps highlighting
potential abnormality locations. A lightweight segmentation network operating on
intermediate encoder features produces spatial attention scores indicating the probability
of clinical relevance at each location.

3.4.2. Pathological Pattern Discrimination

Distinguishing pathological from normal anatomical variations requires learning
subtle visual differences. The discrimination module implements a metric-learning
approach in which embeddings cluster by pathology type. Triplet loss encourages
embeddings to satisfy margin constraints between anchor-positive and anchor-negative
pairs.

3.5. Training Strategy and Implementation
3.5.1. Two-Stage Training Protocol

Pre-training proceeds in two distinct phases. Stage one focuses on anatomy-aware
representation learning using large unlabeled datasets. Training uses the Adam optimizer
with a learning rate of le-4, weight decay of le-6, and a cosine annealing schedule over
200 epochs. Stage two introduces task-specific fine-tuning on labeled downstream
datasets with a reduced learning rate of le-5.

3.5.2. Hyperparameter Configuration

An extensive hyperparameter search identifies optimal configurations that balance
representation quality and computational efficiency. The temperature parameter t in the
contrastive loss requires careful tuning; values between 0.05 and 0.1 yield the best results.
Anatomical constraint weights are optimized via a grid search, with the final value
A_spatial = 0.1, with the complete hyperparameter search results summarized in Table 3.

Table 3. Hyperparameter Search Results.

Parameter Search Optimal Validation Impact
Range Value
Temperature (1) [0.03, 0.15] 0.07 Baseline performance
Spatial weight (A) [0.05, 0.5] 0.1 +2.3% accuracy
Feature dimension (d) [128, 1024] 512 Best efficiency/performance
Batch size [64, 1024] 256 +4.1% with larger batches
Learning rate [le-5, 1e-3] le-4 Stable convergence
Weight decay [le-7, 1e-4] le-6 Prevents overfitting
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3.5.3. Data Augmentation Pipeline

The augmentation pipeline implements a probabilistic approach where
transformations apply with specified probabilities. Spatial augmentations include
rotation (p = 0.5), horizontal flip (p = 0.3), scaling (p = 0.4), and elastic deformation (p =
0.3). Horizontal flipping is only applied to anatomically symmetric views (e.g., chest X-
ray) and is disabled for laterality-sensitive CT/MRI tasks. Intensity augmentations
encompass brightness adjustment (p = 0.5), contrast modification (p = 0.5), and Gaussian
noise addition (p = 0.2). Sequential composition applies transformations in fixed order:
spatial — intensity — cutout.

4. Experiments and Results
4.1. Experimental Setup
4.1.1. Datasets and Pre-processing

Pre-training uses a diverse multimodal dataset that aggregates public repositories
and institutional data sources.

CT data: We combined 888 chest CT scans from LUNA16 (Grand Challenge 2016)
with 131 abdominal CT volumes from LiTS (Liver Tumor Segmentation Challenge), plus
4,237 institutional chest CT scans collected under IRB approval (Protocol #2019-ME-0124),
totaling 5,256 CT volumes.

MRI data: We aggregated 369 brain MRI exams from the BraTS 2020 challenge with
527 institutional brain and cardiac MRI scans (under the same IRB protocol), totaling 896
MRI exams.

X-ray data: The X-ray corpus includes 112,120 frontal chest radiographs from
publicly available CheXpert (191,027 images, subsampled for balance) and MIMIC-CXR-
JPG (227,835 images, subsampled). To maintain consistency with the CT/MRI scale and
computational feasibility, we randomly sampled 112,120 X-ray images for pre-training.

Total pre-training dataset: 5,256 CT, 896 MRI, and 112,120 X-ray = 118,272 images
across three modalities. Institutional data collection: Our institution contributed de-
identified imaging data from routine clinical practice between 2018 and 2021. All data use
was approved by the University Institutional Review Board (IRB Protocol #2019-ME-0124).
Patient consent was waived for this retrospective analysis of de-identified data. All
institutional data underwent quality control to remove incomplete scans, motion artifacts,
and cases with missing metadata. CT preprocessing resamples volumes to an isotropic
Imm spacing and applies standardized windowing. For pre-training, we use a general
soft-tissue window [-160, 240] HU (width=400, level=40) that captures both lung
parenchyma and mediastinal structures, enabling the model to learn representations
across diverse anatomical regions. This window setting is applied consistently across all
CT data during pre-training.

For downstream task-specific fine-tuning, we adapt windows to clinical
requirements:

- Lung nodule classification (LIDC-IDRI): Lung window [-1000, 400] HU

- Liver tumor segmentation (LiTS): Abdominal soft-tissue window [-160, 240] HU

- COVID pneumonia detection (COVIDx CT subset if used): Lung window [-1000,
400] HU MRI preprocessing includes N4 bias field correction, registration to MNI152
standard space, and intensity normalization.

Downstream evaluation employs six benchmark datasets: COVIDx for chest X-ray
pneumonia classification (13,975 images), LIDC-IDRI for lung nodule malignancy
prediction (1,018 cases), BraTS 2020 for brain tumor segmentation (369 patients), ACDC
for cardiac MRI segmentation (100 patients), LiTS for liver tumor segmentation (131 cases),
and RSNA Bone Age (12,611 images).

4.1.2. Evaluation Metrics

Classification tasks report accuracy, balanced accuracy, AUROC, and AUPRC.
Segmentation tasks use the Dice similarity coefficient: Dice=2IPnGI /(IP| + |Gl), where
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P and G denote the predicted and ground-truth regions, respectively. Label efficiency
evaluation varies with the training set size, ranging from 1% to 100% of available labels.

4.1.3. Baseline Methods and Implementation Details

Comparison baselines include ImageNet-supervised pre-training, random
initialization, SimCLR, MoCo-v2, and MAE. Implementation uses PyTorch 1.12 with
CUDA 11.6 on NVIDIA A100 GPUs, with detailed baseline method configurations and
training settings summarized in Table 4.

Table 4. Baseline Method Configurations.

Method Architecture Pre-training Data Key Parameters
ImageNet ResNet-50 ImageNet-1K Transfer learning
Random Init ResNet-50 None Trained from scratch

T tuned in [0.03, 0.15]
SimCLR ResNet-50 Medical imaging (best 0.07), batch=256
(distributed)
MoCo-v2 ResNet-50 Medical imaging K=65536, m=0.999
MAE ViT-Base Medical imaging Masking ratio=0.75
Ours ResNet-50 Multi-modal Anatomy-aware

4.2. Pre-training Performance Analysis
4.2.1. Convergence Characteristics

Training curves reveal distinct convergence patterns across different self-supervised
objectives. The contrastive loss decreases rapidly during initial epochs, dropping from 6.2
to 2.8 within the first 20 epochs. Anatomical constraint losses exhibit delayed activation:
they remain relatively constant during early training while the encoder learns basic
features, then decrease substantially after epoch 50 as spatial understanding develops.

4.2.2. Learned Representation Visualization

Attention map analysis reveals that the anatomy-aware framework develops a focus
on clinically relevant regions. Heat maps show strong activation on pathological findings,
including lung nodules, brain lesions, and cardiac abnormalities. Feature clustering using
k-means reveals anatomically coherent groupings. CT lung images cluster distinctly from
abdominal scans with 94% purity.

This comprehensive figure 2 comprises four subpanels arranged in a 2x2 grid. The
top-left panel displays training convergence curves with epoch number (0-200) on the x-
axis and loss values (0-7) on the y-axis. Three curves show different loss components: total
loss (solid blue line), contrastive loss (dashed orange line), and spatial consistency loss
(dotted green line). The top-right panel presents t-SNE embeddings at three time points
(epochs 50, 100, 200) arranged horizontally. Each t-SNE plot shows 2D projections of
learned representations with points colored by modality (CT in blue, MRI in red, X-ray in
green) and shaped by anatomical region. The bottom-left panel shows attention map
comparisons using a 3 rows x 4 columns grid, representing different methods (Baseline
SimCLR, Proposed Method, Ground Truth). Attention maps use a hot colormap overlaid
on grayscale medical images. The bottom-right panel presents quantitative clustering
metrics, with grouped bar charts comparing intra- and inter-cluster distances across
training epochs.
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Embedding Space and Training Dynamics Analysis
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Figure 2. Embedding Space Visualization and Convergence Analysis.

4.3. Downstream Task Evaluation
4.3.1. CT Image Classification Results

Lung nodule malignancy classification on LIDC-IDRI demonstrates substantial
performance gains. The proposed method achieves 89.3% accuracy and 0.942 AUROC,
outperforming ImageNet pre-training (84.7% accuracy, 0.901 AUROC) and random
initialization (79.2% accuracy, 0.863 AUROC). When reducing labeled data to 10%, the
proposed method maintains 84.1% accuracy while ImageNet drops to 76.3%.

4.3.2. MRI Segmentation Performance

Brain tumor segmentation on BraTS 2020 evaluates performance across multiple
tumor sub-regions. The proposed method achieves mean Dice coefficients of 0.894, 0.836,
and 0.781 for whole tumor, tumor core, and enhancing tumor, respectively. Cardiac MRI
segmentation reaches a mean Dice of 0.921 and 0.897 for end-diastolic and end-systolic
phases.

4.3.3. X-ray Diagnosis Accuracy

Chest X-ray pneumonia detection on COVIDx achieves 94.1% accuracy,
distinguishing COVID-19 pneumonia from bacterial pneumonia and normal cases.
COVID-19 sensitivity reaches 92.7% while maintaining a specificity of 96.3%, with
detailed downstream task performance comparisons reported in Table 5.

Table 5. Downstream Task Performance Comparison.

Task Modali Metric Rand'o ImageN SimCL MoC MA Our
m Init et R 0-v2 E S

Lung cr  ACWAC ooo0 saz%  861%  85.8% oi0 893

Nodule y % %

Lung cr AURO . g3 0901 0919 0915 0908 0942

Nodule C

Liver CT Dice 0847  0.879 0891 0.88 0.882 0.913

Tumor

Brain Dice

o MRI wr 0852 0871 0883 0879 0876 0894
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Brain MRI Dice 279 0803 0821 0815 0809 0.836
Tumor (TC)

Brain MRI Dice o08 0750 0767 0761 0756 0.781
Tumor (ET)

Cardiac ey Dice 1603 0908 0914 0911 0905 0921
Seg (LV)
P A 1.8 941
O Xeray Cc;rac 88.3%  912%  92.7%  92.4% 90/8 90/

4.4. Label Efficiency Assessment
4.4.1. Few-Shot Learning Scenarios

Few-shot learning experiments evaluate performance with minimal labeled data.
Using only 5 labeled examples per class for lung nodule classification, the proposed
method achieves 73.2% accuracy, compared to 58.7% with ImageNet pre-training and 51.3%
with random initialization. This 14.5 percentage point improvement demonstrates
effective knowledge transfer.

4.4.2. Performance vs. Labeled Data Ratio

Systematic evaluation varies the labeled data percentage from 1% to 100%. On brain
tumor segmentation, using 10% labeled data with the proposed pre-training achieves a
0.861 Dice coefficient, matching random initialization performance with 45% labeled data.
This 4.5-fold data efficiency directly translates to reduced annotation burden.

This multi-panel figure 3 presents comprehensive label efficiency analysis using a
2x3 grid layout containing six subplots corresponding to downstream tasks: CT tasks
(lung nodule, liver tumor), MRI tasks (brain tumor, cardiac segmentation), and X-ray tasks
(pneumonia detection, bone age). The X-axis shows labeled data percentage (1%, 2%, 5%,
10%, 25%, 50%, 100%) on a log scale. Y-axis displays task-appropriate performance metrics
ranging from 0.5 to 1.0. Each subplot contains six curves representing different methods:
Random Init (gray dash-dot line with circle markers), ImageNet (blue dashed line with
triangle markers), SIMCLR (green dotted line with square markers), MoCo-v2 (orange
solid thin line with diamond markers), MAE (purple dashed line with pentagon markers),
and Proposed method (red bold solid line with star markers). Shaded confidence intervals
(95% CI) surround each curve. Critical performance thresholds are marked with
horizontal gray dashed lines.

Label Efficiency Analysis Across Medical Imaging Tasks

(a) CT: Lung Nodule Classification (b) CT: Liver Tumor Segmentation (c) MRI: Brain Tumor Segmentation

Dice Score
o
®
Dice Score
o
®

0.
1% 2% 5% 10% 25% 50% 100% 1% 2% 5% 10% 25% 50% 100% 1% 2% 5% 10% 25% 50% 100%
Labeled Data (%) Labeled Data (%) Labeled Data (%)

(d) MRI: Cardiac Segmentation (e) X-ray: Pneumonia Detection (f) X-ray: Bone Age Estimation
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°
s

MAE (months)
N
8

0.
1% 2% 5% 10% 25% 50% 100% 1% 2% 5% 10% 25% 50% 100% 1% 2% 5% 10% 25% 50% 100%
Labeled Data (%) Labeled Data (%) Labeled Data (%)
Methods: - e - Random Init - ~-- ImageNet Pre-train --a- SImCLR MoCo-v2  —— Proposed (Ours)

Figure 3. Label Efficiency Analysis Across Tasks and Modalities.
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4.5. Cross-Modal Generalization Analysis
4.5.1. Transfer Across Imaging Modalities

Cross-modal transfer experiments assess whether representations learned from one
modality generalize to others. Models pre-trained exclusively on CT achieve 86.2%
accuracy on lung nodule classification but only 81.7% when transferred to X-ray
pneumonia detection. Multi-modal pre-training improves X-ray transfer to 88.9%
accuracy, approaching single-modality performance of 89.7%.

4.5.2. Domain Adaptation Capability

Domain-shift robustness evaluates a model's performance when test distributions
differ from the training distribution. Models trained on one institution show 4.2%
accuracy degradation when tested on external data. The proposed pre-training reduces
this degradation to 1.8%, demonstrating improved robustness to domain shift.

4.6. Ablation Studies and Component-wise Validation

We conducted comprehensive ablation experiments to validate the necessity and
contribution of each proposed component. All ablation experiments use the lung nodule
classification task (LIDC-IDRI) with 25% labeled data as the testbed. Baseline performance
with all components: 87.3% accuracy, 0.928 AUROC, with the detailed ablation results of
individual framework components summarized in Table 6.

Table 6. Comprehensive Ablation Study of Framework Components.

Configuratio Accu AU A A

Igl Components Included rac RO Ac AUR
Y ¢ ¢ oc
87.3 0.92
Full Model All components below o 3 - -
(o]

Spatial Loss Remove landmark detection + spatial 847 091 - -
P consistency loss % 1 26 0.017

-Anatomy Remove anatomy-aware augmentation, 854 091 - -
Aug use standard random crop % 6 19 0.012

. Single-scale features (1/16 resolution 855 091 - -
-Multi-Scale only) % 9 1.8 0.009

-ROI o 86.0 092 - -
Attention Remove ROI localization module o 1 13 0007

. Remove metric learning, use only 86.2 092 - -
“Triplet Loss contrastive % 3 11 0.005

Within-modality only, no cross-modal 862 091 - -
“Cross-Modal alignment % 5 21 0013

Minimal

( Si;;lg?j{ Only basic contrastive + random 821 089 - -

augmentation % 3 52 0.035
style)
Critical Analysis:

- Spatial consistency loss is the single most crucial component (+2.6 points),
validating the core "anatomy-aware" premise.

- Cross-modal alignment provides meaningful benefit (+2.1 points) despite using
pseudo-pairs rather than accurate paired data.

- Removing ALL anatomical priors (Minimal configuration) causes -5.2 points
degradation, demonstrating cumulative value.

- ROI attention and triplet loss provide marginal gains (1.1-1.3 points each). These
could be considered "optional enhancements" rather than core requirements.

Complexity-Performance Tradeoff:
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- Training time per epoch: Full model 47 min, Minimal 28 min (1.68x slowdown for
5.2-point gain)

- Inference time per image: Full model 23ms, Minimal 18ms (1.28x slowdown)

- We conclude the added complexity is justified given label efficiency benefits (see
Fig. 3).

4.6.1. Impact of Anatomical Constraints

Systematic ablation validates each component's necessity. Table 6 presents
comprehensive results. Key findings:

- Spatial consistency constraints: Removing reduces accuracy from 87.3% to 84.7% (-
2.6 points)

- Anatomy-aware augmentation: Removal causes -1.9-point degradation

- Cross-modal alignment: Contributes +2.1 points even with pseudo-pairing

- Cumulative effect: All anatomical priors together provide +5.2 points over the
minimal baseline

These results validate our design choices. Spatial loss and cross-modal alignment are
essential (> 2-point contributions). Multi-scale features, ROI attention, and triplet loss
provide marginal improvements (1-2 points) and could be omitted in resource-
constrained scenarios. Eliminating anatomy-aware augmentation results in a 1.9
percentage-point degradation, while removing cross-modal alignment reduces
performance by 2.1 percentage points.

4.6.2. Component-wise Contribution Analysis

Multi-scale feature extraction contributes 1.8 percentage points to classification
accuracy. Attention mechanisms add 1.3 percentage points by focusing on clinically
relevant regions.

4.6.3. Augmentation Strategy Effects

Removing spatial augmentations reduces accuracy by 3.1 percentage points.
Intensity augmentations contribute 2.4 percentage points, while cutout adds 1.6
percentage points. Combined removal results in a 7.8 percentage-point degradation.

5. Conclusion and Future Work
5.1. Summary of Contributions
5.1.1. Key Findings and Achievements

This work introduces an anatomy-aware contrastive pre-training framework that
effectively addresses label-efficiency challenges by explicitly integrating anatomical
structure priors. The proposed approach achieves 89.3% accuracy in lung nodule
classification, 0.894 Dice score in brain tumor segmentation, and 94.1% accuracy in
pneumonia detection. Label efficiency experiments demonstrate that the framework
requires only 22% of the typical annotation budget to achieve 95% of full-supervision
performance.

5.1.2. Performance Improvements Across Modalities

Modality-specific analysis reveals consistent performance gains. CT imaging tasks
show an average accuracy improvement of 4.6 percentage points over ImageNet pre-
training. MRI segmentation tasks achieve 0.042-0.063 Dice coefficient improvements. X-
ray classification benefits most substantially, with 3.0 percentage point accuracy gains
over the SimCLR baseline.

5.2. Limitations and Potential Extensions
5.2.1. Current Constraints

The framework requires anatomical landmark detection, introducing computational
overhead and potential failure modes. Landmark detection accuracy degrades with severe
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anatomical abnormalities or incomplete imaging coverage. The evaluation focuses
primarily on classification and segmentation tasks.

5.2.2. Scalability Considerations

Scaling to larger datasets introduces challenges related to data management and
computational resources. The current framework processes approximately 50,000 3D
volumes during pre-training, requiring 10 days on 8 A100 GPUs. Memory constraints
limit batch sizes and image resolutions.

5.3. Future Research Directions
5.3.1. Integration with Vision-Language Models

Combining anatomy-aware visual representations with textual information from
radiology reports offers promising directions for richer multi-modal learning. Vision-
language models can leverage naturally occurring image-report pairs without requiring
explicit manual annotations.

5.3.2. Federated Learning Applications

Federated learning enables training on distributed hospital datasets without
centralizing sensitive patient data. Anatomy-aware constraints provide valuable
inductive biases for federated settings where data heterogeneity across institutions poses
challenges.

5.3.3. Clinical Deployment Pathways

Translating research prototypes into clinical decision support tools requires
addressing practical deployment challenges. Model interpretability through attention
visualization and uncertainty quantification builds clinician trust. Regulatory approval
processes demand rigorous validation on diverse patient populations.
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