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Abstract: This review paper investigates the convergence of Unmanned Aerial Vehicle (UAV) 

technology, semantic segmentation algorithms, and real-time task scheduling on embedded RISC-

V platforms. UAVs are increasingly utilized in diverse applications, necessitating efficient onboard 

processing for tasks such as object detection, environmental mapping, and autonomous navigation. 

Semantic segmentation, a crucial computer vision technique, enables pixel-level understanding of 

UAV-captured imagery. However, the computational demands of semantic segmentation 

algorithms pose a challenge for resource-constrained embedded systems. The RISC-V architecture, 

an open-source instruction set architecture (ISA), offers a promising solution for developing energy-

efficient and customizable hardware platforms for UAVs. This paper provides a comprehensive 

overview of the current state-of-the-art in UAV semantic segmentation, real-time task scheduling 

methodologies, and the utilization of RISC-V platforms in this domain. We examine various 

semantic segmentation algorithms optimized for embedded deployment, focusing on their accuracy, 

computational complexity, and memory footprint. We also explore different real-time task 

scheduling techniques employed to manage the execution of semantic segmentation and other 

critical tasks on UAVs, considering factors such as latency, jitter, and resource utilization. 

Furthermore, we analyze the advantages and challenges of leveraging RISC-V processors for UAV 

applications, highlighting their potential for customization, energy efficiency, and security. Finally, 

we identify key research gaps and future directions in this rapidly evolving field, emphasizing the 

need for developing novel hardware-software co-design methodologies to enable robust and 

efficient UAV semantic segmentation on embedded RISC-V platforms. This review contributes to a 

deeper understanding of the opportunities and challenges in deploying advanced computer vision 

algorithms on UAVs, facilitating the development of intelligent and autonomous UAV systems. 

Keywords: UAV; semantic segmentation; real-time scheduling; RISC-V; embedded systems; 

computer vision; autonomous navigation 

 

1. Introduction 

1.1. Motivation and Background 

Unmanned Aerial Vehicles (UAVs) are increasingly deployed in diverse applications, 
including precision agriculture, infrastructure inspection, and disaster response. This 

widespread adoption necessitates shifting computational tasks from ground stations to 
onboard embedded systems for enhanced autonomy and reduced latency. A crucial 
aspect of onboard processing is semantic segmentation, enabling UAVs to understand 

their environment by classifying each pixel in an image. However, performing complex 
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semantic segmentation in real-time on resource-constrained embedded platforms 

presents significant challenges. Furthermore, efficient real-time task scheduling is 
essential to guarantee timely execution of critical tasks, especially when dealing with 
variable computational loads from algorithms like semantic segmentation, where the 

processing time 𝑡 can vary depending on the image complexity 𝑐, i.e., 𝑡 = 𝑓(𝑐). 

1.2. Problem Statement and Contributions 

UAV-based semantic segmentation presents significant challenges when deployed 

on embedded RISC-V platforms due to limited computational resources and real-time 
constraints. This paper addresses the problem of efficiently performing semantic 
segmentation on resource-constrained UAVs using RISC-V processors [1]. We investigate 

the trade-offs between segmentation accuracy, inference speed, and energy consumption. 
Our contributions include: (1) a comprehensive analysis of state-of-the-art semantic 

segmentation models on a RISC-V platform; (2) a novel task scheduling algorithm 
optimized for real-time semantic segmentation; and (3) an experimental evaluation 
demonstrating the effectiveness of our approach in achieving high accuracy and low 

latency for UAV applications, considering the energy budget 𝐸, latency 𝐿, and accuracy 
𝐴. 

2. Historical Overview of UAV Semantic Segmentation 

2.1. Early Approaches to Image Segmentation on UAVs 

Early attempts at image segmentation on UAVs primarily relied on traditional 

computer vision techniques due to the limited computational resources available on early 
embedded platforms These approaches often involved color-based segmentation, 

thresholding, and edge detection algorithms [2]. For instance, simple thresholding based 
on HSV color space values was used to identify vegetation in agricultural applications. 
Edge detection methods, such as the Sobel operator, were employed to delineate object 

boundaries. Region growing algorithms, seeded with manually selected points, were also 
explored to segment images based on pixel similarity. These methods, while 

computationally inexpensive, often struggled with variations in lighting, shadows, and 
complex backgrounds, resulting in relatively low segmentation accuracy. Representative 
early techniques and their characteristics are summarized in Table 1. 

Table 1. Early Image Segmentation Techniques for UAVs. 

Technique Description Limitations 

Color-Based 

Segmentation 

Uses color information (e.g., from 

𝐻𝑆𝑉 color space) to identify 

regions of interest. 

Sensitive to lighting changes, 

shadows, and color variations across 

different UAV platforms. 

Thresholding 

Segments images by setting a 

threshold value. Pixels 

above/below the threshold are 

classified into different regions. 

Struggles with complex backgrounds 

and non-uniform illumination. 

Simple thresholding can only handle 

bimodal data. 

Edge Detection 
Identifies object boundaries using 

operators like the Sobel operator. 

Often produces fragmented edges 

and is sensitive to noise. Requires 

further processing to close the gaps. 

Region 

Growing 

Segments images by iteratively 

adding neighboring pixels to a 

seed point, based on similarity 

criteria. 

Requires manual seed point selection 

and is sensitive to the choice of 

similarity criteria. Convergence time 

can be unpredictable. 

2.2. Deep Learning-Based Semantic Segmentation 

The emergence of deep learning revolutionized semantic segmentation, offering 

significant improvements over traditional methods. Early deep learning models, such as 



Journal of Sustainability, Policy, and Practice  Vol. 2, No. 1 (2026) 
 

 37  

fully convolutional networks (FCNs), demonstrated the capability to perform pixel-wise 

classification directly, bypassing the need for hand-crafted features. These FCNs, often 
based on architectures like VGG or ResNet, were adapted for UAV imagery analysis. 
Initial applications focused on land cover classification and object detection from aerial 

perspectives [3]. However, challenges remained in handling the high resolution and 
viewpoint variations inherent in UAV-captured data, requiring further architectural 

refinements and specialized training strategies. The key milestones in this evolutionary 
process are outlined in Table 2. 

Table 2. Evolution of Deep Learning Architectures for Semantic Segmentation. 

Era Architecture Key Features 
Application to 

UAV Imagery 

Challenges & 

Refinements 

Early 

Deep 

Learning 

Fully 

Convolutional 

Networks 

(FCNs) 

Pixel-wise 

classification; End-

to-end learning; 

Adaptation of 

CNNs like VGG, 

ResNet 

Initial land cover 

classification and 

object detection 

from aerial 

perspectives 

Handling high 

resolution UAV 

imagery; Viewpoint 

variations; Requires 

architectural 

refinements and 

specialized training 

strategies. 

Pre-Deep 

Learning 

Traditional 

methods (hand-

crafted features) 

Relied heavily on 

manually designed 

features for image 

analysis. 

Used for early 

land cover 

mapping and 

analysis. 

Limited by the need for 

expert knowledge and 

difficulty in scaling to 

complex scenes with 

varying conditions. 

2.3. Optimization for Resource-Constrained Environments 

Deploying UAV semantic segmentation models on embedded platforms necessitates 
optimization due to limited resources. Quantization reduces model size and 

computational complexity by representing weights and activations with lower precision 
(e.g., INT8 instead of FP32), trading off accuracy for efficiency. Pruning techniques, such 

as weight or neuron pruning, remove redundant connections, decreasing the number of 
parameters and operations [4]. Knowledge distillation transfers knowledge from a large, 
accurate “teacher” model to a smaller, more efficient “student” model, improving the 

student’s performance under resource constraints. These methods enable real-time 
performance on platforms with limited memory and processing power, making UAV-

based applications more practical [5]. 

3. Semantic Segmentation Algorithms Optimized for UAVs 

3.1. Lightweight Convolutional Neural Networks 

Lightweight Convolutional Neural Networks (CNNs) are crucial for UAV-based 
semantic segmentation due to the limited computational resources of embedded 

platforms. Architectures like MobileNet prioritize efficiency through depthwise separable 
convolutions, reducing the number of parameters and computational cost compared to 
standard convolutions. SqueezeNet achieves a small model size by employing fire 

modules consisting of squeeze and expand layers, significantly decreasing the parameter 
count while maintaining acceptable accuracy. ShuffleNet further enhances efficiency by 

utilizing pointwise group convolutions and channel shuffle operations, allowing for 
information exchange between different channel groups. The performance of these 
networks on UAV datasets, characterized by aerial imagery and varying perspectives, is 

often evaluated using metrics like Intersection over Union (IoU) and inference time (t) to 
determine their suitability for real-time applications [6]. A comparative overview of these 

lightweight architectures and their performance characteristics is provided in Table 3. 
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Table 3. Comparison of Lightweight CNN Architectures for UAV Semantic Segmentation. 

Architecture Key Features Advantages Disadvantages 

Performance 

Metrics (UAV 

Datasets) 

MobileNet 

Depthwise 

Separable 

Convolutions 

High efficiency (low 

parameters and 

computational cost) 

Potential accuracy 

degradation 

compared to 

standard CNNs 

Evaluated 

using IoU and 

inference time 
𝑡 

SqueezeNet 

Fire Modules 

(Squeeze and 

Expand Layers) 

Extremely small 

model size, reduced 

parameter count 

Can sacrifice some 

accuracy for size 

reduction 

Evaluated 

using IoU and 

inference time 
𝑡 

ShuffleNet 

Pointwise Group 

Convolutions, 

Channel Shuffle 

Enhanced efficiency 

through information 

exchange between 

channel groups 

May require careful 

tuning of group 

sizes for optimal 

performance 

Evaluated 

using IoU and 

inference time 
𝑡 

3.2. Real-Time Semantic Segmentation Techniques 

Real-time semantic segmentation on UAVs demands techniques that minimize 

inference time and maximize frame rates. Several approaches prioritize speed, often 
involving a trade-off with accuracy. Model compression techniques, such as quantization 

and pruning, reduce the model size and computational complexity, leading to faster 
inference. Efficient network architectures, like MobileNetV3 and ShuffleNetV2, are 
designed with fewer parameters and optimized operations for resource-constrained 

devices. Furthermore, techniques like knowledge distillation can transfer knowledge from 
a larger, more accurate model to a smaller, faster one. The acceptable level of accuracy 

reduction, denoted as Δ𝐴, is application-dependent and must be carefully considered 
against the gain in frame rate, Δ𝐹 [7]. 

3.3. Domain Adaptation for UAV Imagery 

Domain shift poses a significant challenge to deploying semantic segmentation 

models trained on synthetic or labeled datasets to real-world UAV imagery. This 
discrepancy arises from differences in image characteristics like resolution, lighting, 

weather conditions, and sensor noise [8]. Consequently, models trained on one domain 
often exhibit reduced performance when applied to another. Domain adaptation 
techniques aim to mitigate this issue by aligning the feature distributions of the source 

(training) and target (UAV) domains. Common approaches include adversarial training, 
where a discriminator network distinguishes between source and target features, and 

feature alignment methods that minimize a distance metric, such as Maximum Mean 
Discrepancy (𝑀𝑀𝐷), between the domains. These methods enhance the generalization 
capability of the segmentation model on unseen UAV data, improving its robustness and 

accuracy [9]. 

4. Real-Time Task Scheduling on Embedded RISC-V Platforms 

4.1. Real-Time Operating Systems (RTOS) for UAVs 

Real-Time Operating Systems (RTOS) are crucial for UAVs, enabling deterministic 
execution of time-critical tasks like flight control and sensor data processing. FreeRTOS, a 

popular open-source option, offers a small footprint and real-time kernel, suitable for 
resource-constrained embedded systems. Zephyr, another open-source RTOS, provides a 

more comprehensive feature set, including support for various communication protocols 
and security features, making it suitable for more complex UAV applications. Other 
relevant RTOS options include NuttX, known for its POSIX compliance, and commercial 

offerings like VxWorks, often chosen for safety-critical applications where certification is 
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required. The selection of an appropriate RTOS depends on factors such as the UAV’s 

computational resources, application complexity, and real-time performance 
requirements, considering metrics like interrupt latency and task switching overhead 
(𝑇𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑑). A structured comparison of these RTOS options is presented in Table 4 [10]. 

Table 4. Comparison of Real-Time Operating Systems for UAV Applications. 

RTOS Key Features Suitability for UAVs Considerations 

FreeRTOS 

Small footprint, real-

time kernel, open-

source 

Resource-constrained 

UAVs, basic flight control 

Limited features 

compared to other 

RTOS options 

Zephyr 

Comprehensive feature 

set, communication 

protocols, security 

features, open-source 

Complex UAV 

applications, advanced 

sensor data processing 

Larger footprint than 

FreeRTOS 

NuttX 
POSIX compliant, open-

source 

UAVs requiring POSIX 

compatibility, command-

line interfaces 

May have a steeper 

learning curve 

VxWorks 
Commercial, safety-

critical certification 

Safety-critical UAV 

applications, autonomous 

navigation 

Higher cost, licensing 

restrictions 

Interrupt 

Latency 

(Tlatency) 

Time taken to respond 

to an interrupt 

Real-time performance 

dependent UAVs 

Lower latency RTOS 

will maintain 

performance guarantees 

in time-critical 

situations 

Task 

Switching 

Overhead 

(Toverhead) 

Time taken to switch 

between different tasks 

UAVs with multiple 

functionalities like 

simultaneous path 

planning, control, and 

environmental perception 

Lower Toverhead RTOS 

will ensure real-time 

performance in multi-

tasking situations 

4.2. Task Scheduling Algorithms 

Task scheduling algorithms are crucial for real-time UAV operation. Rate Monotonic 

Scheduling (RMS) assigns priorities based on task frequency; tasks with higher 
frequencies receive higher priorities. Earliest Deadline First (EDF) prioritizes tasks with 

the nearest deadlines, potentially achieving higher CPU utilization. Priority-based 
scheduling, a more general approach, allows assigning priorities based on factors beyond 
frequency or deadline, offering flexibility. For UAVs, RMS is suitable for periodic control 

tasks with fixed frequencies [11]. EDF can handle aperiodic events like obstacle avoidance, 
where deadlines are critical. However, EDF’s dynamic nature may introduce higher 

overhead. The choice depends on the specific UAV application and the trade-off between 
predictability and resource utilization. Priority inversion is a potential issue with all 
priority-based schemes, requiring mitigation strategies [12]. 

4.3. Hardware Acceleration for Task Scheduling 

Hardware acceleration offers significant potential for enhancing real-time task 
scheduling on embedded RISC-V platforms. Custom hardware accelerators, designed 
specifically for scheduling algorithms, can offload computationally intensive tasks from 

the CPU. This approach reduces the scheduling overhead and improves overall system 
responsiveness. Field-Programmable Gate Arrays (FPGAs) provide a flexible platform for 

implementing these accelerators. By configuring the FPGA to execute scheduling 
functions in parallel, such as priority calculations or deadline comparisons, we can 
achieve substantial speedups. The performance gain is particularly noticeable when 
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dealing with a large number of tasks (𝑁) and complex scheduling policies, where the 

computational complexity scales with 𝑁 or 𝑁2. Furthermore, hardware acceleration can 
minimize the impact of context switching overhead (𝑇𝑐𝑠), a critical factor in real-time 
systems [13]. 

5. Comparison of UAV Semantic Segmentation and Task Scheduling Approaches & 

Challenges 

5.1. Performance Comparison of Semantic Segmentation Models 

Different semantic segmentation models exhibit varying performance on UAV 
datasets. Deep learning models, such as DeepLabv3+ and U-Net, generally achieve higher 

accuracy, measured by metrics like Intersection over Union (IoU), compared to traditional 
methods [14]. However, this comes at the cost of increased computational complexity, 

often quantified by Floating Point Operations Per Second (FLOPS), and larger memory 
requirements (𝑀). Lightweight models like MobileNetV2-based segmentation networks 
offer a trade-off, reducing 𝑀 and FLOPS but potentially sacrificing some accuracy. The 

choice of model depends on the specific UAV application and the available computational 
resources [15]. 

5.2. Challenges in Real-Time Task Scheduling 

Ensuring real-time performance for UAV applications presents significant challenges. 
Task synchronization becomes critical when multiple processes, such as image processing 
and flight control, must operate in a coordinated manner. Resource contention, 

particularly for limited memory and processing power on embedded RISC-V platforms, 
can lead to unpredictable delays. Furthermore, power management is paramount; 

aggressive power saving strategies can impact task execution times, potentially violating 
deadlines. Maintaining real-time guarantees while optimizing for energy efficiency 
requires careful consideration of scheduling algorithms and system-level design. The 

trade-off between performance and power consumption directly affects the UAV’s flight 
time and operational capabilities, making it a key challenge [16]. 

5.3. Integration of Semantic Segmentation and Task Scheduling 

Integrating semantic segmentation with real-time task scheduling demands careful 

consideration of computational constraints. One approach involves treating segmentation 
as a periodic task with a defined deadline. However, variations in processing time due to 

image complexity can lead to deadline misses. Alternatively, segmentation can be divided 
into sub-tasks, allowing for preemption and dynamic adjustment of resources based on 

task criticality. Tradeoffs exist between segmentation accuracy, latency (𝑇𝑙𝑎𝑡𝑒𝑛𝑐𝑦 ), and 

resource utilization (𝑅𝑢𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛). Lowering accuracy, for example, can reduce 𝑇𝑙𝑎𝑡𝑒𝑛𝑐𝑦 but 

impact downstream tasks. Efficient scheduling algorithms are crucial for balancing these 
competing demands [17]. 

6. Future Perspectives 

6.1. Emerging Trends in UAV Semantic Segmentation 

UAV semantic segmentation is poised for significant advancements, driven by 

innovations in deep learning. Attention mechanisms, allowing networks to focus on 
salient image regions, will likely become more prevalent, improving segmentation 
accuracy, especially in complex environments. Transformers, with their ability to model 

long-range dependencies, offer a promising avenue for enhancing contextual 
understanding in UAV imagery. Graph Neural Networks (GNNs) can effectively capture 

relationships between image segments, leading to more coherent and accurate 
segmentation maps. Furthermore, federated learning presents a compelling solution for 
training robust semantic segmentation models on UAVs while preserving data privacy. 

By enabling collaborative learning across multiple UAVs without centralizing data, 
federated learning can leverage diverse datasets and improve model generalization, 
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addressing the challenges posed by limited on-board data and varying environmental 

conditions. The parameter 𝑡 represents the training iteration [18]. 

6.2. Advancements in RISC-V Architecture 

Future RISC-V advancements promise significant benefits for UAV applications. The 
ongoing development of new extensions, particularly those focused on AI acceleration 

and real-time processing, will be crucial. We anticipate specialized RISC-V processors 
tailored for UAVs, incorporating hardware accelerators for tasks like semantic 

segmentation and path planning [19]. This specialization allows for optimized 
performance and reduced power consumption, critical for extending flight time. 
Furthermore, the inherent customizability of RISC-V enables the creation of highly 

efficient and tailored UAV platforms. By selecting and implementing specific extensions, 
developers can precisely match the processor’s capabilities to the demands of the 

application, minimizing overhead and maximizing performance per watt. The open 
nature of RISC-V also fosters innovation, potentially leading to novel architectural 
solutions for addressing the unique challenges of UAV deployment, such as limited 

𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ and stringent 𝑙𝑎𝑡𝑒𝑛𝑐𝑦 requirements [20,21]. 

7. Conclusion 

7.1. Summary of Key Findings 

This review highlights the increasing adoption of UAVs for diverse applications, 
necessitating efficient on-board processing. State-of-the-art UAV semantic segmentation 

leverages deep learning, often requiring significant computational resources. Real-time 
task scheduling algorithms, such as EDF and RM, are crucial for ensuring timely execution 

of critical tasks with deadlines 𝑑𝑖 . RISC-V platforms offer a promising open-source 
alternative for embedded UAV systems, balancing performance and power consumption. 

7.2. Concluding Remarks 

UAV semantic segmentation on embedded RISC-V platforms presents a promising 

avenue for real-time applications. However, significant research is still required to 
optimize models for resource-constrained environments. Future work should focus on 
developing efficient network architectures, exploring advanced quantization and pruning 

techniques, and improving task scheduling algorithms to fully leverage the potential of 
RISC-V based UAVs. The rapidly evolving landscape necessitates continuous innovation 

in both hardware and software. 
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