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Abstract: This review paper investigates the convergence of Unmanned Aerial Vehicle (UAV)
technology, semantic segmentation algorithms, and real-time task scheduling on embedded RISC-
V platforms. UAVs are increasingly utilized in diverse applications, necessitating efficient onboard
processing for tasks such as object detection, environmental mapping, and autonomous navigation.
Semantic segmentation, a crucial computer vision technique, enables pixel-level understanding of
UAV-captured imagery. However, the computational demands of semantic segmentation
algorithms pose a challenge for resource-constrained embedded systems. The RISC-V architecture,
an open-source instruction set architecture (ISA), offers a promising solution for developing energy-
efficient and customizable hardware platforms for UAVs. This paper provides a comprehensive
overview of the current state-of-the-art in UAV semantic segmentation, real-time task scheduling
methodologies, and the utilization of RISC-V platforms in this domain. We examine various
semantic segmentation algorithms optimized for embedded deployment, focusing on their accuracy,
computational complexity, and memory footprint. We also explore different real-time task
scheduling techniques employed to manage the execution of semantic segmentation and other
critical tasks on UAVs, considering factors such as latency, jitter, and resource utilization.
Furthermore, we analyze the advantages and challenges of leveraging RISC-V processors for UAV
applications, highlighting their potential for customization, energy efficiency, and security. Finally,
we identify key research gaps and future directions in this rapidly evolving field, emphasizing the
need for developing novel hardware-software co-design methodologies to enable robust and
efficient UAV semantic segmentation on embedded RISC-V platforms. This review contributes to a
deeper understanding of the opportunities and challenges in deploying advanced computer vision
algorithms on UAVs, facilitating the development of intelligent and autonomous UAV systems.

Keywords: UAV; semantic segmentation; real-time scheduling; RISC-V; embedded systems;
computer vision; autonomous navigation

1. Introduction
1.1. Motivation and Background

Unmanned Aerial Vehicles (UAVs) are increasingly deployed in diverse applications,
including precision agriculture, infrastructure inspection, and disaster response. This
widespread adoption necessitates shifting computational tasks from ground stations to
onboard embedded systems for enhanced autonomy and reduced latency. A crucial
aspect of onboard processing is semantic segmentation, enabling UAVs to understand
their environment by classifying each pixel in an image. However, performing complex
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semantic segmentation in real-time on resource-constrained embedded platforms
presents significant challenges. Furthermore, efficient real-time task scheduling is
essential to guarantee timely execution of critical tasks, especially when dealing with
variable computational loads from algorithms like semantic segmentation, where the
processing time t can vary depending on the image complexity c, i.e.,, t = f(c).

1.2. Problem Statement and Contributions

UAV-based semantic segmentation presents significant challenges when deployed
on embedded RISC-V platforms due to limited computational resources and real-time
constraints. This paper addresses the problem of efficiently performing semantic
segmentation on resource-constrained UAVs using RISC-V processors [1]. We investigate
the trade-offs between segmentation accuracy, inference speed, and energy consumption.
Our contributions include: (1) a comprehensive analysis of state-of-the-art semantic
segmentation models on a RISC-V platform; (2) a novel task scheduling algorithm
optimized for real-time semantic segmentation; and (3) an experimental evaluation
demonstrating the effectiveness of our approach in achieving high accuracy and low
latency for UAV applications, considering the energy budget E, latency L, and accuracy
A.

2. Historical Overview of UAV Semantic Segmentation
2.1. Early Approaches to Image Segmentation on UAV's

Early attempts at image segmentation on UAVs primarily relied on traditional
computer vision techniques due to the limited computational resources available on early
embedded platforms These approaches often involved color-based segmentation,
thresholding, and edge detection algorithms [2]. For instance, simple thresholding based
on HSV color space values was used to identify vegetation in agricultural applications.
Edge detection methods, such as the Sobel operator, were employed to delineate object
boundaries. Region growing algorithms, seeded with manually selected points, were also
explored to segment images based on pixel similarity. These methods, while
computationally inexpensive, often struggled with variations in lighting, shadows, and
complex backgrounds, resulting in relatively low segmentation accuracy. Representative
early techniques and their characteristics are summarized in Table 1.

Table 1. Early Image Segmentation Techniques for UAVs.

Technique Description Limitations
Color-Based Uses color information '(e. g. 'from Sensitive to hghtlng cl'langes,
, HSV color space) to identify =~ shadows, and color variations across
Segmentation . . .
regions of interest. different UAV platforms.
Segments images by setting a  Struggles with complex backgrounds
Thresholdin threshold value. Pixels and non-uniform illumination.
& above/below the threshold are Simple thresholding can only handle
classified into different regions. bimodal data.

Often produces fragmented edges
and is sensitive to noise. Requires
further processing to close the gaps.
Segments images by iteratively Requires manual seed point selection

Identifies object boundaries using

Edge Detecti
ge Letection operators like the Sobel operator.

Region adding neighboring pixels to a and is sensitive to the choice of
Growing seed point, based on similarity similarity criteria. Convergence time
criteria. can be unpredictable.

2.2. Deep Learning-Based Semantic Segmentation

The emergence of deep learning revolutionized semantic segmentation, offering
significant improvements over traditional methods. Early deep learning models, such as
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fully convolutional networks (FCNs), demonstrated the capability to perform pixel-wise
classification directly, bypassing the need for hand-crafted features. These FCNs, often
based on architectures like VGG or ResNet, were adapted for UAV imagery analysis.
Initial applications focused on land cover classification and object detection from aerial
perspectives [3]. However, challenges remained in handling the high resolution and
viewpoint variations inherent in UAV-captured data, requiring further architectural
refinements and specialized training strategies. The key milestones in this evolutionary
process are outlined in Table 2.

Table 2. Evolution of Deep Learning Architectures for Semantic Segmentation.

Applicati hall
Era Architecture Key Features ppication fo ¢ a. enges &
UAYV Imagery Refinements
Handling high
Pixel-wise ... resolution UAV
Full lassification: End Initial land cover Vi -
Early ully classification; End- .. .. 4 imagery; Viewpoin

Convolutional  to-end learning; variations; Requires

Deep object detection

Learnin Networks Adaptation of from aerial architectural
& (FCNs) CNNs like VGG, . refinements and
perspectives 1 .
ResNet specialized training
strategies.
o Relied heavily on  Used for early Limited by the need for
Traditional . expert knowledge and
Pre-Deep manually designed  land cover coe . .
.~ methods (hand- . . difficulty in scaling to
Learning features for image mapping and X
crafted features) analysis analysis complex scenes with

varying conditions.

2.3. Optimization for Resource-Constrained Environments

Deploying UAV semantic segmentation models on embedded platforms necessitates
optimization due to limited resources. Quantization reduces model size and
computational complexity by representing weights and activations with lower precision
(e.g., INT8 instead of FP32), trading off accuracy for efficiency. Pruning techniques, such
as weight or neuron pruning, remove redundant connections, decreasing the number of
parameters and operations [4]. Knowledge distillation transfers knowledge from a large,
accurate “teacher” model to a smaller, more efficient “student” model, improving the
student’s performance under resource constraints. These methods enable real-time
performance on platforms with limited memory and processing power, making UAV-
based applications more practical [5].

3. Semantic Segmentation Algorithms Optimized for UAVs
3.1. Lightweight Convolutional Neural Networks

Lightweight Convolutional Neural Networks (CNNs) are crucial for UAV-based
semantic segmentation due to the limited computational resources of embedded
platforms. Architectures like MobileNet prioritize efficiency through depthwise separable
convolutions, reducing the number of parameters and computational cost compared to
standard convolutions. SqueezeNet achieves a small model size by employing fire
modules consisting of squeeze and expand layers, significantly decreasing the parameter
count while maintaining acceptable accuracy. ShuffleNet further enhances efficiency by
utilizing pointwise group convolutions and channel shuffle operations, allowing for
information exchange between different channel groups. The performance of these
networks on UAV datasets, characterized by aerial imagery and varying perspectives, is
often evaluated using metrics like Intersection over Union (IoU) and inference time (t) to
determine their suitability for real-time applications [6]. A comparative overview of these
lightweight architectures and their performance characteristics is provided in Table 3.
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Table 3. Comparison of Lightweight CNN Architectures for UAV Semantic Segmentation.

Performance
Architecture Key Features Advantages Disadvantages  Metrics (UAV
Datasets)
Depthwise  High efficiency (low Potential aecuracy Evaluated
MobileNet Separable parameters and degradation using loU fmd
Convolutions  computational cost) compared to inference time
standard CNNs t
Evaluated

Fire Modules Extremely small ~ Can sacrifice some |
using IoU and

inference time
t
Enhanced efficiency May require careful = Evaluated

SqueezeNet (Squeeze and modelsize, reduced accuracy for size
Expand Layers)  parameter count reduction

Pointwise Group
ShuffleNet Convolutions,
Channel Shuffle

through information  tuning of group  using IoU and
exchange between  sizes for optimal  inference time
channel groups performance t

3.2. Real-Time Semantic Segmentation Techniques

Real-time semantic segmentation on UAVs demands techniques that minimize
inference time and maximize frame rates. Several approaches prioritize speed, often
involving a trade-off with accuracy. Model compression techniques, such as quantization
and pruning, reduce the model size and computational complexity, leading to faster
inference. Efficient network architectures, like MobileNetV3 and ShuffleNetV2, are
designed with fewer parameters and optimized operations for resource-constrained
devices. Furthermore, techniques like knowledge distillation can transfer knowledge from
a larger, more accurate model to a smaller, faster one. The acceptable level of accuracy
reduction, denoted as A4, is application-dependent and must be carefully considered
against the gain in frame rate, AF [7].

3.3. Domain Adaptation for UAV Imagery

Domain shift poses a significant challenge to deploying semantic segmentation
models trained on synthetic or labeled datasets to real-world UAV imagery. This
discrepancy arises from differences in image characteristics like resolution, lighting,
weather conditions, and sensor noise [8]. Consequently, models trained on one domain
often exhibit reduced performance when applied to another. Domain adaptation
techniques aim to mitigate this issue by aligning the feature distributions of the source
(training) and target (UAV) domains. Common approaches include adversarial training,
where a discriminator network distinguishes between source and target features, and
feature alignment methods that minimize a distance metric, such as Maximum Mean
Discrepancy (MMD), between the domains. These methods enhance the generalization
capability of the segmentation model on unseen UAV data, improving its robustness and
accuracy [9].

4. Real-Time Task Scheduling on Embedded RISC-V Platforms
4.1. Real-Time Operating Systems (RTOS) for UAV’s

Real-Time Operating Systems (RTOS) are crucial for UAVs, enabling deterministic
execution of time-critical tasks like flight control and sensor data processing. FreeRTOS, a
popular open-source option, offers a small footprint and real-time kernel, suitable for
resource-constrained embedded systems. Zephyr, another open-source RTOS, provides a
more comprehensive feature set, including support for various communication protocols
and security features, making it suitable for more complex UAV applications. Other
relevant RTOS options include NuttX, known for its POSIX compliance, and commercial
offerings like VxWorks, often chosen for safety-critical applications where certification is
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required. The selection of an appropriate RTOS depends on factors such as the UAV’s
computational resources, application complexity, and real-time performance
requirements, considering metrics like interrupt latency and task switching overhead
(Toverneaa)- A structured comparison of these RTOS options is presented in Table 4 [10].

Table 4. Comparison of Real-Time Operating Systems for UAV Applications.

RTOS Key Features Suitability for UAVs Considerations
Small footprint, real- . Limited features
. Resource-constrained
FreeRTOS time kernel, open- L
UAVs, basic flight control .
source RTOS options

Comprehensive feature

compared to other

Complex UAV

set, communication Larger footprint than

Zephyr . applications, advanced
Py protocols, security PP . FreeRTOS
sensor data processing
features, open-source
. UAVs requiring POSIX
POSIX compliant, open- red & May have a steeper
NuttX compatibility, command- )
source L learning curve
line interfaces
Safety-critical UAV
Commercial, safety- ik Higher cost, licensing
VxWorks L - applications, autonomous L
critical certification S restrictions
navigation
Lower latency RTOS
Interrupt : . will maintain
PY Time taken to respond Real-time performance
Latency . performance guarantees
to an interrupt dependent UAVs - o
(Thatency) in time-critical
situations
UAVs with multiple
Task P Lower Tyuunesq RTOS

functionalities like
Switching  Time taken to switch will ensure real-time

simultaneous path . .
performance in multi-

tasking situations

Overhead between different tasks .
planning, control, and

T . .
(Toverncaa) environmental perception

4.2. Task Scheduling Algorithms

Task scheduling algorithms are crucial for real-time UAV operation. Rate Monotonic
Scheduling (RMS) assigns priorities based on task frequency; tasks with higher
frequencies receive higher priorities. Earliest Deadline First (EDF) prioritizes tasks with
the nearest deadlines, potentially achieving higher CPU utilization. Priority-based
scheduling, a more general approach, allows assigning priorities based on factors beyond
frequency or deadline, offering flexibility. For UAVs, RMS is suitable for periodic control
tasks with fixed frequencies [11]. EDF can handle aperiodic events like obstacle avoidance,
where deadlines are critical. However, EDF's dynamic nature may introduce higher
overhead. The choice depends on the specific UAV application and the trade-off between
predictability and resource utilization. Priority inversion is a potential issue with all
priority-based schemes, requiring mitigation strategies [12].

4.3. Hardware Acceleration for Task Scheduling

Hardware acceleration offers significant potential for enhancing real-time task
scheduling on embedded RISC-V platforms. Custom hardware accelerators, designed
specifically for scheduling algorithms, can offload computationally intensive tasks from
the CPU. This approach reduces the scheduling overhead and improves overall system
responsiveness. Field-Programmable Gate Arrays (FPGAs) provide a flexible platform for
implementing these accelerators. By configuring the FPGA to execute scheduling
functions in parallel, such as priority calculations or deadline comparisons, we can
achieve substantial speedups. The performance gain is particularly noticeable when
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dealing with a large number of tasks (N) and complex scheduling policies, where the
computational complexity scales with N or NZ2. Furthermore, hardware acceleration can
minimize the impact of context switching overhead (T,;), a critical factor in real-time
systems [13].

5. Comparison of UAV Semantic Segmentation and Task Scheduling Approaches &
Challenges

5.1. Performance Comparison of Semantic Segmentation Models

Different semantic segmentation models exhibit varying performance on UAV
datasets. Deep learning models, such as DeepLabv3+ and U-Net, generally achieve higher
accuracy, measured by metrics like Intersection over Union (IoU), compared to traditional
methods [14]. However, this comes at the cost of increased computational complexity,
often quantified by Floating Point Operations Per Second (FLOPS), and larger memory
requirements (M). Lightweight models like MobileNetV2-based segmentation networks
offer a trade-off, reducing M and FLOPS but potentially sacrificing some accuracy. The
choice of model depends on the specific UAV application and the available computational
resources [15].

5.2. Challenges in Real-Time Task Scheduling

Ensuring real-time performance for UAV applications presents significant challenges.
Task synchronization becomes critical when multiple processes, such as image processing
and flight control, must operate in a coordinated manner. Resource contention,
particularly for limited memory and processing power on embedded RISC-V platforms,
can lead to unpredictable delays. Furthermore, power management is paramount;
aggressive power saving strategies can impact task execution times, potentially violating
deadlines. Maintaining real-time guarantees while optimizing for energy efficiency
requires careful consideration of scheduling algorithms and system-level design. The
trade-off between performance and power consumption directly affects the UAV’s flight
time and operational capabilities, making it a key challenge [16].

5.3. Integration of Semantic Segmentation and Task Scheduling

Integrating semantic segmentation with real-time task scheduling demands careful
consideration of computational constraints. One approach involves treating segmentation
as a periodic task with a defined deadline. However, variations in processing time due to
image complexity can lead to deadline misses. Alternatively, segmentation can be divided
into sub-tasks, allowing for preemption and dynamic adjustment of resources based on
task criticality. Tradeoffs exist between segmentation accuracy, latency (Tjgency), and
resource utilization (Ryjjization)- LOWering accuracy, for example, can reduce Tigrenc, but
impact downstream tasks. Efficient scheduling algorithms are crucial for balancing these
competing demands [17].

6. Future Perspectives
6.1. Emerging Trends in UAV Semantic Segmentation

UAV semantic segmentation is poised for significant advancements, driven by
innovations in deep learning. Attention mechanisms, allowing networks to focus on
salient image regions, will likely become more prevalent, improving segmentation
accuracy, especially in complex environments. Transformers, with their ability to model
long-range dependencies, offer a promising avenue for enhancing contextual
understanding in UAV imagery. Graph Neural Networks (GNNs) can effectively capture
relationships between image segments, leading to more coherent and accurate
segmentation maps. Furthermore, federated learning presents a compelling solution for
training robust semantic segmentation models on UAVs while preserving data privacy.
By enabling collaborative learning across multiple UAVs without centralizing data,
federated learning can leverage diverse datasets and improve model generalization,
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addressing the challenges posed by limited on-board data and varying environmental
conditions. The parameter t represents the training iteration [18].

6.2. Advancements in RISC-V Architecture

Future RISC-V advancements promise significant benefits for UAV applications. The
ongoing development of new extensions, particularly those focused on Al acceleration
and real-time processing, will be crucial. We anticipate specialized RISC-V processors
tailored for UAVs, incorporating hardware accelerators for tasks like semantic
segmentation and path planning [19]. This specialization allows for optimized
performance and reduced power consumption, critical for extending flight time.
Furthermore, the inherent customizability of RISC-V enables the creation of highly
efficient and tailored UAV platforms. By selecting and implementing specific extensions,
developers can precisely match the processor’'s capabilities to the demands of the
application, minimizing overhead and maximizing performance per watt. The open
nature of RISC-V also fosters innovation, potentially leading to novel architectural
solutions for addressing the unique challenges of UAV deployment, such as limited
bandwidth and stringent latency requirements [20,21].

7. Conclusion
7.1. Summary of Key Findings

This review highlights the increasing adoption of UAVs for diverse applications,
necessitating efficient on-board processing. State-of-the-art UAV semantic segmentation
leverages deep learning, often requiring significant computational resources. Real-time
task scheduling algorithms, such as EDF and RM, are crucial for ensuring timely execution
of critical tasks with deadlines d;. RISC-V platforms offer a promising open-source
alternative for embedded UAV systems, balancing performance and power consumption.

7.2. Concluding Remarks

UAV semantic segmentation on embedded RISC-V platforms presents a promising
avenue for real-time applications. However, significant research is still required to
optimize models for resource-constrained environments. Future work should focus on
developing efficient network architectures, exploring advanced quantization and pruning
techniques, and improving task scheduling algorithms to fully leverage the potential of
RISC-V based UAVs. The rapidly evolving landscape necessitates continuous innovation
in both hardware and software.
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