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Abstract: As multimodal fusion applications integrating visual, speech, and language models
become widespread in critical domains such as healthcare, transportation, and national defense, the
vulnerability of these models to cross-modal adversarial attacks poses a significant threat to system
security. Traditional detection methods are typically confined to single-modal signal analysis,
struggling to capture subtle inconsistencies across multi-source information. This paper proposes
an uncertainty-based cross-modal attack detection and adaptive reconstruction method, aiming to
achieve real-time detection and repair through joint modeling of multi-modal consistency. The
approach embeds a Bayesian inference module within the Transformer fusion layer to estimate joint
uncertainty across modalities, enabling dynamic monitoring of semantic consistency. Upon
detecting anomalous uncertainty distributions, the system automatically activates a lightweight
reconstruction subnetwork. This subnetwork regenerates perturbed features based on cross-modal
correlations, thereby repairing compromised regions. Experiments conducted on the COCO-
Multimodal QA and AVSpeech datasets demonstrate that this method improves detection accuracy
by 34% and 29% against FGSM and PGD attacks, respectively. Post-attack repair increases model
accuracy by 22% with less than 6% increase in inference latency. The findings demonstrate that
uncertainty-driven modal consistency estimation effectively enhances the security and reliability of
multimodal learning systems in real-world scenarios. This research provides a deployable defense
mechanism for multimodal Al systems, applicable to defense surveillance, autonomous driving,
and medical image analysis. It aligns with the technical development direction of the U.S.
Department of Defense's Al Security Assurance Program and holds practical significance for
strengthening the security of critical national Al infrastructure.
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1. Introduction

With the widespread deployment of multimodal fusion models in critical domains
like autonomous driving, medical diagnosis, and intelligent surveillance, cross-modal
adversarial attacks pose increasingly severe threats to system stability and task reliability.
Existing research predominantly focuses on unimodal defense strategies, struggling to
address semantic shifts and structural perturbations across heterogeneous information
sources. Consequently, developing cross-modal detection and reconstruction
mechanisms integrated with uncertainty estimation has become a core technological
challenge requiring urgent breakthroughs. This paper proposes a Bayesian inference-
based uncertainty perception framework that achieves structured defense through
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semantic consistency monitoring and adaptive reconstruction. It aims to enhance the
robustness and real-time repair capabilities of multimodal systems under complex
disturbance conditions, providing theoretical support and methodological pathways for
secure and trustworthy multimodal learning models.

2. Theoretical Model for Cross-Modal Attack Detection Based on Uncertainty
Estimation

The cross-modal attack detection model constructs an uncertainty estimation
framework based on the Transformer fusion mechanism. A Bayesian inference
submodule is introduced at each fusion layer. Let the multimodal inputs be {x,,x,, x;},
representing visual, audio, and text features respectively. After fusion, the hidden
representationz € IR% is output. The system employs Monte Carlo sampling to estimate
the joint prediction distribution p(y|x) and defines model uncertainty as the coefficient

o(z)

of variation U = e where ¢(z) and u(z) denote the standard deviation and mean of

multiple sampling results, respectively. This complements existing attention-based cross-
modal anomaly detection studies [1]. The theoretical model architecture is shown in
Figure 1, comprising an input encoding layer, cross-modal fusion layer, uncertainty
estimation layer, and dynamic reconstruction trigger gate. Multimodal semantic
consistency is measured via KL divergence, defined as:
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Figure 1. Theoretical Model Structure for Cross-Modal Attack Detection.

Where p;. p, represents the prediction distribution output after multimodal fusion.
If Dy, > 0, the reconstruction mechanism is triggered. The core system design aims to
achieve end-to-end semantic consistency monitoring, enhancing structural sensitivity to
heterogeneous attacks.

3. Cross-Modal Attack Detection Algorithm Based on Uncertainty Estimation
3.1. Uncertainty Distribution Feature Extraction

Multimodal attack detection relies on precise uncertainty distribution modeling. The
system employs a Bayesian deep feature extraction architecture, mapping each modality
input x,, €IR™™ to a high-dimensional latent space z, € IR% . A sample set

{z,(;),z,(,f), ...,z,(,f )} is then obtained through multiple rounds of Monte Carlo Dropout

sampling. Uncertainty distribution features are jointly represented by a mean vector and

covariance matrix, defined as:
1 k 1 k K
tn = 2 2Kt 7 I = 2 SR i) = o) (Zy = ) k)
Where pu,, captures the central semantic position, while X, describes the extent of
semantic diffusion within the modality. Inconsistencies between modalities can be

quantified using the Mahalanobis distance Dy, to reveal potential attack paths [2].
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3.2. Semantic Consistency Evaluation Method

After obtaining uncertainty distributions across modalities, the system designs a
spatial alignment mechanism based on joint semantic tensors to evaluate intermodal
semantic consistency for refined attack detection. Let the semantic tensors generated by
fusing visual, audio, and text modalities be T,,T,, T, € IR™*%. After unified projection into
a shared space, they form the semantic alignment tensor T. Structural similarity between
each pair of modalities is then measured using [3]. The system introduces a structured
cosine matching function S(T;, Tj):

) . (K)
ST T)) = 5 Sies Tt ©
B T AT

Where Ti(k) denotes the position vector of the k th semantic unit within the tensor
T;. This function measures the consistency distribution of semantic embeddings across
modalities. Furthermore, by constructing a tri-modal joint consistency map, the semantic
drift tensor AT = |T; — T,| is defined, where T, represents the original tensor before
attack perturbation, and the non-zero regions ofAT characterize local modal alignment
anomalies. A dynamic drift gating module is introduced at the feature layer, applying
subsequent reconstruction operations ( ) only to regions where ATexceeds the threshold
7 . This ensures the precision and convergence efficiency of the reconstruction strategy.
Figure 2 displays the comparison results of the original and reconstructed semantic
tensors in a two-dimensional space. The semantic drift points, clearly marked by arrows,
reveal the disturbance distribution characteristics of cross-modal attacks on semantic

consistency.
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Figure 2. Semantic Alignment Tensor Comparison.

3.3. Anomaly Detection Criteria Construction

Based on the aforementioned semantic consistency evaluation mechanism and
uncertainty distribution nesting relationship, the detection system constructs a
multidimensional joint criterion to identify potential cross-modal adversarial
perturbations. The algorithm performs dynamic analysis at three levels: modal signal,
semantic structure, and uncertainty estimation: (1). At the uncertainty distribution
dimension, the covariance spectrum divergence (J5) is extracted across visual, audio, and
textual modalities. The spectral norm difference of the three-modal covariance matrices is
controlled within the empirical threshold range [0.35, 0.65]. If any modality exceeds this
boundary, it is deemed to exhibit abnormal fluctuation trends; @ On the semantic
consistency dimension, construct a high-order statistical description of the multimodal
tensor drift matrix (AT ), calculating its skewness and kurtosis distributions. When
skewness exceeds 1.2 or kurtosis surpasses 3.5, structural semantic misalignment between
modalities is deemed present; (3). In the distribution alignment dimension, analyze the
modal embedding space overlap rate R,. Utilize high-dimensional volume projection to
measure the intersection ratio between modal ellipsoids. When R, < 0.42, it is regarded
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as severe misalignment [4]. The fusion of the above indicators forms a joint criterion.
Based on this, the system triggers reconstruction mechanisms or interrupts information
propagation to ensure the robustness of the multimodal system.

4. Adaptive Reconstruction Method Based on Uncertainty Estimation
4.1. Lightweight Reconstruction Subnetwork Architecture

To address the sparse nature of locally perturbed regions in cross-modal attacks, the
reconstruction module adopts a pluggable lightweight subnetwork architecture. This
enables low-latency repair of anomalous modal representations while ensuring the
stability and convergence of the global inference structure [5].

(D The input guidance layer employs a channel selection gating mechanism to
dynamically filter disturbance region vectors from input modalities. With a fixed input
channel count of 32, separable convolutions compress feature redundancy to reduce
redundant responses, controlling parameter redundancy below 0.18.

(2) The intermediate reconstruction layer employs a cascaded attention fusion
structure. It cross-maps activation channel dimensions into a tensor and introduces a
channel Drop connection mechanism, compressing the effective channel count to 40% of
the original channels per layer to minimize unnecessary feature propagation.

(3 The output layer incorporates a response adjustment module. A lightweight
normalization layer redistributes gradients across high-response channels, realigning the
reconstructed tensor with the main network's fusion path. Only semantically consistent
difference vectors are retained to prevent redundant learning.

Figure 3 illustrates the weight response distribution across subnetwork channels.
Under multimodal interference conditions, highly active regions predominantly
concentrate within the mid-to-low channel range, demonstrating the channel pruning
strategy's robust structural adaptability and response sparsity control capabilities.
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Figure 3. Weight Response Distribution Map.

4.2. Cross-Modal Feature Association Reconstruction Strategy

To effectively restore multimodal semantic consistency in disturbed regions, the
reconstruction strategy employs a differential alignment mechanism based on cross-
modal correlation mapping, guiding lightweight subnetworks to dynamically reconstruct
incomplete features. First, a cross-modal correlation mapping matrix A € IR¥? is
constructed, defined as:

RICORIED)
Y oGl el @

Where x;. x; represent feature vectors of the visual and audio modalities,
respectively; ¢(-). P(-)denotes the modal embedding function; and 4;; indicates the
semantic similarity between the i th visual unit and the j th audio unit. This mapping
serves as a guidance path, constraining the reconstruction module to localize perturbed
semantic regions in the cross-modal space. Furthermore, the reconstruction module
outputs are generated by weighting the fusion representation Z € IR™* with the
guidance attention a € IR", as follows:
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Zi=ai-zi+(1—ap) - 2 )

Where z; represents the original modal features, Z; denotes the subnetwork-
reconstructed features, and «; is dynamically generated by the uncertainty scoring
network within the range [0,1] to adjust the fusion weight between original and
reconstructed features [6]. On the COCO-MQA and AVSpeech datasets, the reconstructed
region accounts for an average of 23.7% of the total feature space, with the mapping matrix
sparsity rate controlled below 0.42. This effectively supports semantic restoration
operations under low interference coverage. The strategy balances local repair accuracy
with global consistency, ensuring the system possesses structural-level adaptive
capabilities against cross-modal attacks.

4.3. Reconstruction Network Training and Optimization

Reconstruction network training centers on cross-modal consistency restoration
objectives, employing a multi-objective joint optimization strategy to ensure high-fidelity
semantic restoration and stable feature convergence under attack perturbations [7]. The
training phase constructs supervised signals from pairs of original unperturbed samples
and perturbed samples. The training batch size is set to 64, with an optimization cycle
maintained at 120 iterations. An adaptive learning rate decay strategy is employed to
enhance convergence stability. First, the reconstruction consistency loss is defined with
feature recovery deviation as its core metric:

Lyec = ~ X1y l12; — zil13 (©)

where Z; denotes the reconstructed feature vector, z; represents the original true
feature, and n is the number of feature units. This loss constrains the reconstructed
output to align with the normal semantic distribution. To enhance semantic coupling after
multimodal reconstruction, a cross-modal consistency optimization term is introduced:

1 22}

Lalign =1- n ?:1 ||21|l|||lZl’|| (7)

where z represents the target features after modal fusion, measuring the
alignment quality of reconstructed features in the joint semantic space. The overall loss
combines these terms with weighting factor 4; = 0.7, 4, = 0.3to form a multi-objective
optimization function. The AdamW optimizer is employed with a weight decay
coefficient of 0.008 to prevent overfitting and enhance the model's generalization
capability under high-noise attack scenarios. An uncertainty weighting mechanism is
introduced during training to apply loss weighting to high-risk regions, enabling the
reconstruction network to exhibit heightened attention and robust update capabilities in
attack-sensitive areas.

5. Experimental Results and Analysis
5.1. Experimental Datasets and Evaluation Metrics

To comprehensively validate the adaptability and robustness of the uncertainty-
driven cross-modal attack detection and reconstruction mechanism, two datasets with
distinct structural characteristics were selected: COCO-Multimodal QA for evaluating
semantic question-answering cross-modal association capabilities, and the AVSpeech
dataset focusing on modal consistency modeling in audiovisual co-expression scenarios.
The dataset and task structures are summarized in Table 1.

Table 1. Experimental Dataset Parameters and Task Structure Comparison.

. Sample Average Label
Dataset Modal Pair Size  Duration/Length Task Type Dimensions
Image-Text
. Question- 5 target
COCO-MQA Image+ Text 124,000 15 words/image .
Answer categories
Matching




Journal of Sustainability, Policy, and Practice Vol. 2, No. 1 (2026)

Audiovisual .
2 seconds / Semantic Synchronized
AVSpeech Video+ Audio 381,000 . Frame
segment Consistency Annotation
Detection

Additionally, the evaluation framework employs four core metrics: detection
accuracy (Acc), KL divergence (KL), reconstruction error (RE), and uncertainty mean (U-
Mean). These measure detection sensitivity, semantic shift, reconstruction fidelity, and
risk identification capability.

5.2. Attack Detection Performance Validation

Attack detection performance validation focuses on the uncertainty response
variations of multimodal systems under different attack intensities and perturbation
patterns. Experiments utilize the COCO-MQA and AVSpeech datasets to construct fusion
model testing scenarios, applying cross-modal adversarial attacks of the FGSM and PGD
types. Attack magnitudes are set within the ¢=0.03 to €=0.05 range, covering low to
medium-intensity perturbation conditions. The detection model underwent comparative
testing across three modes: unprotected, unimodal detection, and uncertainty-driven
detection. Key metrics recorded included detection accuracy, misclassification rate, and
the fluctuation range of uncertainty mean. Within the experimental observation range,
uncertainty-driven detection achieved a 34% accuracy improvement over the unprotected
baseline under FGSM attacks and a 29% improvement under PGD attacks, while
maintaining inference latency below 6%. This experimental validation workflow ensures
quantifiable detection performance changes across different attack strategies, establishing
a cross-modal detection performance evaluation framework: [8].

5.3. Quantitative Evaluation of Reconstruction Effect

Reconstruction effectiveness evaluation focuses on feature restoration quality in
perturbed regions, emphasizing quantification of the model's post-recovery recognition
performance and modality consistency correction capability [9]. Cross-modal adversarial
scenarios were constructed on COCO-MQA and AVSpeech datasets, recording changes
in recognition accuracy, semantic consistency distance, and uncertainty entropy under
identical interference conditions before and after reconstruction. Quantitative analysis
reveals that under multimodal input disturbances, the reconstruction module elevates the
backbone model's average accuracy by 22% compared to the baseline after perturbation.
Specifically, COCO-MQA question-answering precision improves by 17.6%, AVSpeech
lip-sync detection accuracy increases by 26.3%, while maintaining an average inference
latency increase of no more than 5.91% across all attack intensities. The evaluation also
monitors the reduction in KL divergence of the reconstructed semantic tensor alongside
changes in reconstruction error, ensuring the repaired output maintains structural
consistency within the modal joint space. This process establishes a parameter foundation
for subsequent adaptive optimization of defense mechanisms and system-level
deployment assessment.

5.4. Comparative Experiments Across Attack Types

Different attack types exhibit distinct perturbation characteristics on the system's
detection and reconstruction mechanisms. The experiment selected three mainstream
adversarial methods-FGSM (Fast Gradient), PGD (Projection Gradient Defeating), and
CW (Minimum Perturbation)-applying identical input sample perturbations under a
unified modality fusion model architecture. Attack magnitudes were set as ¢=0.03 (FGSM),
€=0.01, iteration step size 0.005 (PGD), and confidence compression coefficient 0.9 under
L, constraint (CW) [10]. Experiments monitored the perturbation path deformation
trajectories and uncertainty response density distributions of the three attack types in the
output semantic tensor space. PGD attacks caused feature embedding offset radii reaching
0.42, while CW perturbations exhibited low-amplitude long-trajectory drifts with
asymmetric distributions. FGSM perturbations focused on linear shifts in shallow feature
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spaces. Figure 4 illustrates the distinct impact paths of the three attacks within the shared
semantic space, revealing their structural characteristics and spatial pattern separability
in modality-consistent interference behavior. This provides a quantitative foundation in

the embedding space for designing defense mechanisms against diverse adversarial
scenarios.
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Figure 4. Attack Influence Distribution Map.

6. Conclusion

In summary, this method establishes a cross-modal attack detection and adaptive
reconstruction framework based on uncertainty estimation. By integrating Transformer
fusion mechanisms with Bayesian inference, it achieves dynamic monitoring and
structured repair of multimodal semantic consistency. The detection criteria fuse
uncertainty distributions, semantic drift features, and modal alignment offsets,
significantly enhancing the system's sensitivity and adaptability to diverse attacks. The
lightweight reconstruction subnetwork design fully considers the sparsity characteristics
of perturbed regions, effectively balancing reconstruction accuracy and inference
overhead, demonstrating excellent deployment feasibility. Although the current strategy
still incurs some accuracy loss in unified modal space construction and low-dimensional
projection mapping, it provides a quantifiable security support path for multimodal
systems to resist adversarial risks. Future work may extend to more complex modality
combinations and multi-task scenarios, exploring the temporal evolution mechanisms of
structural perturbations and the continuous optimization capabilities of reconstruction
strategies to support security assurance requirements for critical systems in high-risk
environments.
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