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Abstract: As multimodal fusion applications integrating visual, speech, and language models 
become widespread in critical domains such as healthcare, transportation, and national defense, the 
vulnerability of these models to cross-modal adversarial attacks poses a significant threat to system 
security. Traditional detection methods are typically confined to single-modal signal analysis, 
struggling to capture subtle inconsistencies across multi-source information. This paper proposes 
an uncertainty-based cross-modal attack detection and adaptive reconstruction method, aiming to 
achieve real-time detection and repair through joint modeling of multi-modal consistency. The 
approach embeds a Bayesian inference module within the Transformer fusion layer to estimate joint 
uncertainty across modalities, enabling dynamic monitoring of semantic consistency. Upon 
detecting anomalous uncertainty distributions, the system automatically activates a lightweight 
reconstruction subnetwork. This subnetwork regenerates perturbed features based on cross-modal 
correlations, thereby repairing compromised regions. Experiments conducted on the COCO-
Multimodal QA and AVSpeech datasets demonstrate that this method improves detection accuracy 
by 34% and 29% against FGSM and PGD attacks, respectively. Post-attack repair increases model 
accuracy by 22% with less than 6% increase in inference latency. The findings demonstrate that 
uncertainty-driven modal consistency estimation effectively enhances the security and reliability of 
multimodal learning systems in real-world scenarios. This research provides a deployable defense 
mechanism for multimodal AI systems, applicable to defense surveillance, autonomous driving, 
and medical image analysis. It aligns with the technical development direction of the U.S. 
Department of Defense's AI Security Assurance Program and holds practical significance for 
strengthening the security of critical national AI infrastructure. 

Keywords: multimodal learning; attack detection; uncertainty estimation; adaptive reconstruction; 
Transformer fusion; cross-modal defense; system security 
 

1. Introduction 
With the widespread deployment of multimodal fusion models in critical domains 

like autonomous driving, medical diagnosis, and intelligent surveillance, cross-modal 
adversarial attacks pose increasingly severe threats to system stability and task reliability. 
Existing research predominantly focuses on unimodal defense strategies, struggling to 
address semantic shifts and structural perturbations across heterogeneous information 
sources. Consequently, developing cross-modal detection and reconstruction 
mechanisms integrated with uncertainty estimation has become a core technological 
challenge requiring urgent breakthroughs. This paper proposes a Bayesian inference-
based uncertainty perception framework that achieves structured defense through 
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semantic consistency monitoring and adaptive reconstruction. It aims to enhance the 
robustness and real-time repair capabilities of multimodal systems under complex 
disturbance conditions, providing theoretical support and methodological pathways for 
secure and trustworthy multimodal learning models. 

2. Theoretical Model for Cross-Modal Attack Detection Based on Uncertainty 
Estimation 

The cross-modal attack detection model constructs an uncertainty estimation 
framework based on the Transformer fusion mechanism. A Bayesian inference 
submodule is introduced at each fusion layer. Let the multimodal inputs be {𝑥𝑥𝜐𝜐, 𝑥𝑥𝑎𝑎 , 𝑥𝑥𝑡𝑡}, 
representing visual, audio, and text features respectively. After fusion, the hidden 
representation𝑧𝑧 ∈ 𝐼𝐼𝐼𝐼𝑑𝑑  is output. The system employs Monte Carlo sampling to estimate 
the joint prediction distribution 𝑝𝑝(𝑦𝑦|𝑥𝑥) and defines model uncertainty as the coefficient 
of variation 𝑈𝑈 = 𝜎𝜎(𝑧𝑧)

𝜇𝜇(𝑧𝑧)
, where 𝜎𝜎(𝑧𝑧) and 𝜇𝜇(𝑧𝑧) denote the standard deviation and mean of 

multiple sampling results, respectively. This complements existing attention-based cross-
modal anomaly detection studies [1]. The theoretical model architecture is shown in 
Figure 1, comprising an input encoding layer, cross-modal fusion layer, uncertainty 
estimation layer, and dynamic reconstruction trigger gate. Multimodal semantic 
consistency is measured via KL divergence, defined as: 

𝐷𝐷𝐾𝐾𝐾𝐾(𝑝𝑝1‖𝑝𝑝2) = ∑ 𝑝𝑝1𝑖𝑖 (𝑖𝑖) 𝑙𝑙𝑙𝑙𝑙𝑙 𝑝𝑝1(𝑖𝑖)
𝑝𝑝2(𝑖𝑖)

         (1) 

 
Figure 1. Theoretical Model Structure for Cross-Modal Attack Detection. 

Where 𝑝𝑝1、𝑝𝑝2 represents the prediction distribution output after multimodal fusion. 
If 𝐷𝐷𝐾𝐾𝐾𝐾 > 𝜃𝜃, the reconstruction mechanism is triggered. The core system design aims to 
achieve end-to-end semantic consistency monitoring, enhancing structural sensitivity to 
heterogeneous attacks. 

3. Cross-Modal Attack Detection Algorithm Based on Uncertainty Estimation 
3.1. Uncertainty Distribution Feature Extraction 

Multimodal attack detection relies on precise uncertainty distribution modeling. The 
system employs a Bayesian deep feature extraction architecture, mapping each modality 
input 𝑥𝑥𝑚𝑚 ∈ IR𝑑𝑑𝑚𝑚  to a high-dimensional latent space 𝑧𝑧𝑚𝑚 ∈ IR𝑑𝑑𝑧𝑧 . A sample set 
�𝑧𝑧𝑚𝑚

(1), 𝑧𝑧𝑚𝑚
(2), … , 𝑧𝑧𝑚𝑚

(𝐾𝐾)�  is then obtained through multiple rounds of Monte Carlo Dropout 
sampling. Uncertainty distribution features are jointly represented by a mean vector and 
covariance matrix, defined as: 

𝜇𝜇𝑚𝑚 = 1
𝐾𝐾
∑ 𝑧𝑧𝑚𝑚

(𝑘𝑘)𝐾𝐾
𝑘𝑘=1 , Σ𝑚𝑚 = 1

𝐾𝐾
∑ (𝑧𝑧𝑚𝑚

(𝑘𝑘)𝐾𝐾
𝑘𝑘=1 − 𝜇𝜇𝑚𝑚)(𝑧𝑧𝑚𝑚

(𝑘𝑘) − 𝜇𝜇𝑚𝑚)      (2) 
Where 𝜇𝜇𝑚𝑚 captures the central semantic position, while 𝛴𝛴𝑚𝑚 describes the extent of 

semantic diffusion within the modality. Inconsistencies between modalities can be 
quantified using the Mahalanobis distance 𝐷𝐷𝑀𝑀 to reveal potential attack paths [2]. 
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3.2. Semantic Consistency Evaluation Method 
After obtaining uncertainty distributions across modalities, the system designs a 

spatial alignment mechanism based on joint semantic tensors to evaluate intermodal 
semantic consistency for refined attack detection. Let the semantic tensors generated by 
fusing visual, audio, and text modalities be 𝑇𝑇𝜐𝜐,𝑇𝑇𝑎𝑎 ,𝑇𝑇𝑡𝑡 ∈ IR𝑛𝑛×𝑑𝑑. After unified projection into 
a shared space, they form the semantic alignment tensor 𝑇𝑇𝑓𝑓. Structural similarity between 
each pair of modalities is then measured using [3]. The system introduces a structured 
cosine matching function 𝑆𝑆(𝑇𝑇𝑖𝑖 ,𝑇𝑇𝑗𝑗): 

𝑆𝑆(𝑇𝑇𝑖𝑖 ,𝑇𝑇𝑗𝑗) = 1
𝑛𝑛
∑

𝑇𝑇𝑖𝑖
(𝑘𝑘)⋅𝑇𝑇𝑗𝑗

(𝑘𝑘)

�𝑇𝑇𝑖𝑖
(𝑘𝑘)�⋅�𝑇𝑇𝑗𝑗

(𝑘𝑘)�
𝑛𝑛
𝑘𝑘=1           (3) 

Where 𝑇𝑇𝑖𝑖
(𝑘𝑘) denotes the position vector of the 𝑘𝑘 th semantic unit within the tensor 

𝑇𝑇𝑖𝑖 . This function measures the consistency distribution of semantic embeddings across 
modalities. Furthermore, by constructing a tri-modal joint consistency map, the semantic 
drift tensor 𝛥𝛥𝛥𝛥 = �𝑇𝑇𝑓𝑓 − 𝑇𝑇𝑟𝑟�  is defined, where 𝑇𝑇𝑟𝑟  represents the original tensor before 
attack perturbation, and the non-zero regions of𝛥𝛥𝛥𝛥 characterize local modal alignment 
anomalies. A dynamic drift gating module is introduced at the feature layer, applying 
subsequent reconstruction operations ( ) only to regions where 𝛥𝛥𝛥𝛥exceeds the threshold 
𝜏𝜏 . This ensures the precision and convergence efficiency of the reconstruction strategy. 
Figure 2 displays the comparison results of the original and reconstructed semantic 
tensors in a two-dimensional space. The semantic drift points, clearly marked by arrows, 
reveal the disturbance distribution characteristics of cross-modal attacks on semantic 
consistency. 

 
Figure 2. Semantic Alignment Tensor Comparison. 

3.3. Anomaly Detection Criteria Construction 
Based on the aforementioned semantic consistency evaluation mechanism and 

uncertainty distribution nesting relationship, the detection system constructs a 
multidimensional joint criterion to identify potential cross-modal adversarial 
perturbations. The algorithm performs dynamic analysis at three levels: modal signal, 
semantic structure, and uncertainty estimation: ①. At the uncertainty distribution 
dimension, the covariance spectrum divergence (𝛿𝛿𝛴𝛴) is extracted across visual, audio, and 
textual modalities. The spectral norm difference of the three-modal covariance matrices is 
controlled within the empirical threshold range [0.35, 0.65]. If any modality exceeds this 
boundary, it is deemed to exhibit abnormal fluctuation trends; ②. On the semantic 
consistency dimension, construct a high-order statistical description of the multimodal 
tensor drift matrix (𝛥𝛥𝛥𝛥 ), calculating its skewness and kurtosis distributions. When 
skewness exceeds 1.2 or kurtosis surpasses 3.5, structural semantic misalignment between 
modalities is deemed present; ③. In the distribution alignment dimension, analyze the 
modal embedding space overlap rate 𝑅𝑅𝑜𝑜. Utilize high-dimensional volume projection to 
measure the intersection ratio between modal ellipsoids. When 𝑅𝑅𝑜𝑜 < 0.42, it is regarded 
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as severe misalignment [4]. The fusion of the above indicators forms a joint criterion. 
Based on this, the system triggers reconstruction mechanisms or interrupts information 
propagation to ensure the robustness of the multimodal system. 

4. Adaptive Reconstruction Method Based on Uncertainty Estimation 
4.1. Lightweight Reconstruction Subnetwork Architecture 

To address the sparse nature of locally perturbed regions in cross-modal attacks, the 
reconstruction module adopts a pluggable lightweight subnetwork architecture. This 
enables low-latency repair of anomalous modal representations while ensuring the 
stability and convergence of the global inference structure [5]. 

① The input guidance layer employs a channel selection gating mechanism to 
dynamically filter disturbance region vectors from input modalities. With a fixed input 
channel count of 32, separable convolutions compress feature redundancy to reduce 
redundant responses, controlling parameter redundancy below 0.18. 

② The intermediate reconstruction layer employs a cascaded attention fusion 
structure. It cross-maps activation channel dimensions into a tensor and introduces a 
channel Drop connection mechanism, compressing the effective channel count to 40% of 
the original channels per layer to minimize unnecessary feature propagation. 

③ The output layer incorporates a response adjustment module. A lightweight 
normalization layer redistributes gradients across high-response channels, realigning the 
reconstructed tensor with the main network's fusion path. Only semantically consistent 
difference vectors are retained to prevent redundant learning. 

Figure 3 illustrates the weight response distribution across subnetwork channels. 
Under multimodal interference conditions, highly active regions predominantly 
concentrate within the mid-to-low channel range, demonstrating the channel pruning 
strategy's robust structural adaptability and response sparsity control capabilities. 

 
Figure 3. Weight Response Distribution Map. 

4.2. Cross-Modal Feature Association Reconstruction Strategy 
To effectively restore multimodal semantic consistency in disturbed regions, the 

reconstruction strategy employs a differential alignment mechanism based on cross-
modal correlation mapping, guiding lightweight subnetworks to dynamically reconstruct 
incomplete features. First, a cross-modal correlation mapping matrix 𝐴𝐴 ∈ IR𝑑𝑑×𝑑𝑑  is 
constructed, defined as: 

𝐴𝐴𝑖𝑖,𝑗𝑗 =
𝜑𝜑(𝑥𝑥𝑖𝑖)𝑇𝑇𝜓𝜓(𝑥𝑥𝑗𝑗)

‖𝜑𝜑(𝑥𝑥𝑖𝑖)‖⋅�𝜓𝜓(𝑥𝑥𝑗𝑗)�
           (4) 

Where 𝑥𝑥𝑖𝑖、𝑥𝑥𝑗𝑗  represent feature vectors of the visual and audio modalities, 
respectively; 𝜑𝜑(⋅)、𝜓𝜓(⋅)denotes the modal embedding function; and 𝐴𝐴𝑖𝑖,𝑗𝑗  indicates the 
semantic similarity between the 𝑖𝑖 th visual unit and the 𝑗𝑗 th audio unit. This mapping 
serves as a guidance path, constraining the reconstruction module to localize perturbed 
semantic regions in the cross-modal space. Furthermore, the reconstruction module 
outputs are generated by weighting the fusion representation 𝑍𝑍 ∈ IR𝑛𝑛×𝑑𝑑  with the 
guidance attention 𝛼𝛼 ∈ IR𝑛𝑛, as follows: 
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𝑧̂𝑧𝑖𝑖 = 𝛼𝛼𝑖𝑖 ⋅ 𝑧𝑧𝑖𝑖 + (1 − 𝛼𝛼𝑖𝑖) ⋅ 𝑧̃𝑧𝑖𝑖          (5) 
Where 𝑧𝑧𝑖𝑖  represents the original modal features, 𝑧̃𝑧𝑖𝑖  denotes the subnetwork-

reconstructed features, and 𝛼𝛼𝑖𝑖  is dynamically generated by the uncertainty scoring 
network within the range [0,1] to adjust the fusion weight between original and 
reconstructed features [6]. On the COCO-MQA and AVSpeech datasets, the reconstructed 
region accounts for an average of 23.7% of the total feature space, with the mapping matrix 
sparsity rate controlled below 0.42. This effectively supports semantic restoration 
operations under low interference coverage. The strategy balances local repair accuracy 
with global consistency, ensuring the system possesses structural-level adaptive 
capabilities against cross-modal attacks. 

4.3. Reconstruction Network Training and Optimization 
Reconstruction network training centers on cross-modal consistency restoration 

objectives, employing a multi-objective joint optimization strategy to ensure high-fidelity 
semantic restoration and stable feature convergence under attack perturbations [7]. The 
training phase constructs supervised signals from pairs of original unperturbed samples 
and perturbed samples. The training batch size is set to 64, with an optimization cycle 
maintained at 120 iterations. An adaptive learning rate decay strategy is employed to 
enhance convergence stability. First, the reconstruction consistency loss is defined with 
feature recovery deviation as its core metric: 

𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟 = 1
𝑛𝑛
∑ ‖𝑧̂𝑧𝑖𝑖 − 𝑧𝑧𝑖𝑖‖22𝑛𝑛
𝑖𝑖=1            (6) 

where 𝑧̂𝑧𝑖𝑖  denotes the reconstructed feature vector, 𝑧𝑧𝑖𝑖  represents the original true 
feature, and 𝑛𝑛 is the number of feature units. This loss constrains the reconstructed 
output to align with the normal semantic distribution. To enhance semantic coupling after 
multimodal reconstruction, a cross-modal consistency optimization term is introduced: 

𝐿𝐿𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = 1 − 1
𝑛𝑛
∑ 𝑧̂𝑧𝑖𝑖⋅𝑧𝑧𝑖𝑖

′

‖𝑧̂𝑧𝑖𝑖‖⋅�𝑧𝑧𝑖𝑖
′�

𝑛𝑛
𝑖𝑖=1           (7) 

where 𝑧𝑧𝑖𝑖 ′  represents the target features after modal fusion, measuring the 
alignment quality of reconstructed features in the joint semantic space. The overall loss 
combines these terms with weighting factor 𝜆𝜆1 = 0.7、𝜆𝜆2 = 0.3to form a multi-objective 
optimization function. The AdamW optimizer is employed with a weight decay 
coefficient of 0.008 to prevent overfitting and enhance the model's generalization 
capability under high-noise attack scenarios. An uncertainty weighting mechanism is 
introduced during training to apply loss weighting to high-risk regions, enabling the 
reconstruction network to exhibit heightened attention and robust update capabilities in 
attack-sensitive areas. 

5. Experimental Results and Analysis 
5.1. Experimental Datasets and Evaluation Metrics 

To comprehensively validate the adaptability and robustness of the uncertainty-
driven cross-modal attack detection and reconstruction mechanism, two datasets with 
distinct structural characteristics were selected: COCO-Multimodal QA for evaluating 
semantic question-answering cross-modal association capabilities, and the AVSpeech 
dataset focusing on modal consistency modeling in audiovisual co-expression scenarios. 
The dataset and task structures are summarized in Table 1. 

Table 1. Experimental Dataset Parameters and Task Structure Comparison. 

Dataset Modal Pair 
Sample 

Size 
Average 

Duration/Length 
Task Type 

Label 
Dimensions 

COCO-MQA Image + Text 124,000 15 words/image 

Image-Text 
Question-
Answer 

Matching 

5 target 
categories 
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AVSpeech Video + Audio 381,000 
2 seconds / 

segment 

Audiovisual 
Semantic 

Consistency 
Detection 

Synchronized 
Frame 

Annotation 

Additionally, the evaluation framework employs four core metrics: detection 
accuracy (Acc), KL divergence (KL), reconstruction error (RE), and uncertainty mean (U-
Mean). These measure detection sensitivity, semantic shift, reconstruction fidelity, and 
risk identification capability. 

5.2. Attack Detection Performance Validation 
Attack detection performance validation focuses on the uncertainty response 

variations of multimodal systems under different attack intensities and perturbation 
patterns. Experiments utilize the COCO-MQA and AVSpeech datasets to construct fusion 
model testing scenarios, applying cross-modal adversarial attacks of the FGSM and PGD 
types. Attack magnitudes are set within the ε=0.03 to ε=0.05 range, covering low to 
medium-intensity perturbation conditions. The detection model underwent comparative 
testing across three modes: unprotected, unimodal detection, and uncertainty-driven 
detection. Key metrics recorded included detection accuracy, misclassification rate, and 
the fluctuation range of uncertainty mean. Within the experimental observation range, 
uncertainty-driven detection achieved a 34% accuracy improvement over the unprotected 
baseline under FGSM attacks and a 29% improvement under PGD attacks, while 
maintaining inference latency below 6%. This experimental validation workflow ensures 
quantifiable detection performance changes across different attack strategies, establishing 
a cross-modal detection performance evaluation framework: [8]. 

5.3. Quantitative Evaluation of Reconstruction Effect 
Reconstruction effectiveness evaluation focuses on feature restoration quality in 

perturbed regions, emphasizing quantification of the model's post-recovery recognition 
performance and modality consistency correction capability [9]. Cross-modal adversarial 
scenarios were constructed on COCO-MQA and AVSpeech datasets, recording changes 
in recognition accuracy, semantic consistency distance, and uncertainty entropy under 
identical interference conditions before and after reconstruction. Quantitative analysis 
reveals that under multimodal input disturbances, the reconstruction module elevates the 
backbone model's average accuracy by 22% compared to the baseline after perturbation. 
Specifically, COCO-MQA question-answering precision improves by 17.6%, AVSpeech 
lip-sync detection accuracy increases by 26.3%, while maintaining an average inference 
latency increase of no more than 5.91% across all attack intensities. The evaluation also 
monitors the reduction in KL divergence of the reconstructed semantic tensor alongside 
changes in reconstruction error, ensuring the repaired output maintains structural 
consistency within the modal joint space. This process establishes a parameter foundation 
for subsequent adaptive optimization of defense mechanisms and system-level 
deployment assessment. 

5.4. Comparative Experiments Across Attack Types 
Different attack types exhibit distinct perturbation characteristics on the system's 

detection and reconstruction mechanisms. The experiment selected three mainstream 
adversarial methods-FGSM (Fast Gradient), PGD (Projection Gradient Defeating), and 
CW (Minimum Perturbation)-applying identical input sample perturbations under a 
unified modality fusion model architecture. Attack magnitudes were set as ε=0.03 (FGSM), 
ε=0.01, iteration step size 0.005 (PGD), and confidence compression coefficient 0.9 under 
L₂ constraint (CW) [10]. Experiments monitored the perturbation path deformation 
trajectories and uncertainty response density distributions of the three attack types in the 
output semantic tensor space. PGD attacks caused feature embedding offset radii reaching 
0.42, while CW perturbations exhibited low-amplitude long-trajectory drifts with 
asymmetric distributions. FGSM perturbations focused on linear shifts in shallow feature 
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spaces. Figure 4 illustrates the distinct impact paths of the three attacks within the shared 
semantic space, revealing their structural characteristics and spatial pattern separability 
in modality-consistent interference behavior. This provides a quantitative foundation in 
the embedding space for designing defense mechanisms against diverse adversarial 
scenarios. 

 
Figure 4. Attack Influence Distribution Map. 

6. Conclusion 
In summary, this method establishes a cross-modal attack detection and adaptive 

reconstruction framework based on uncertainty estimation. By integrating Transformer 
fusion mechanisms with Bayesian inference, it achieves dynamic monitoring and 
structured repair of multimodal semantic consistency. The detection criteria fuse 
uncertainty distributions, semantic drift features, and modal alignment offsets, 
significantly enhancing the system's sensitivity and adaptability to diverse attacks. The 
lightweight reconstruction subnetwork design fully considers the sparsity characteristics 
of perturbed regions, effectively balancing reconstruction accuracy and inference 
overhead, demonstrating excellent deployment feasibility. Although the current strategy 
still incurs some accuracy loss in unified modal space construction and low-dimensional 
projection mapping, it provides a quantifiable security support path for multimodal 
systems to resist adversarial risks. Future work may extend to more complex modality 
combinations and multi-task scenarios, exploring the temporal evolution mechanisms of 
structural perturbations and the continuous optimization capabilities of reconstruction 
strategies to support security assurance requirements for critical systems in high-risk 
environments. 
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