

Review

Dynamic Pricing with Product Returns: Integrating Optimization Models and Market-Oriented Development Strategies

Chenglong Bai ^{1,*}, Kexin Du ¹ and Andrew P. Pierce ¹

¹ Department of Business Analytics, Illinois State University, Normal, IL, USA

* Correspondence: Chenglong Bai, Department of Business Analytics, Illinois State University, Normal, IL, USA

Abstract: Dynamic pricing under inventory constraints has traditionally been examined through optimization-based models that emphasize short-term revenue maximization. However, the increasing prevalence of product return mechanisms in contemporary markets introduces additional behavioral and structural complexities that challenge the effectiveness of purely analytical pricing approaches. This integrative review examines dynamic pricing in return-intensive environments by synthesizing insights from operations management, market-oriented development, data-driven demand analysis, and mechanism-oriented system thinking. The study highlights how product returns function as an intermediate structure linking pricing decisions, demand realization, and inventory dynamics, thereby reshaping the feedback mechanisms of pricing systems. By moving beyond static demand assumptions and exogenous return representations, the paper reframes dynamic pricing as a system-guiding intervention that operates indirectly through consumer expectations, return policies, and market perceptions. An integrative conceptual framework is proposed to bridge optimization rigor with strategic and behavioral realism. The review contributes to the literature by emphasizing long-term stability, adaptability, and strategic coherence in pricing system design, and it offers managerial insights for coordinating pricing and return policies in complex and uncertain market environments.

Keywords: dynamic pricing; product returns; inventory constraints; market-oriented strategy; complex adaptive systems

Received: 05 November 2025

Revised: 21 November 2025

Accepted: 26 December 2025

Published: 02 January 2026

Copyright: © 2026 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (<https://creativecommons.org/licenses/by/4.0/>).

1. Introduction

1.1. Background and Research Motivation

Product return mechanisms have become a pervasive feature of contemporary markets, particularly in e-commerce, omnichannel retailing, and service-oriented industries. Liberal return policies are widely adopted to reduce consumers' perceived purchase risk, enhance trust, and stimulate demand in increasingly competitive environments. As a result, returns are no longer a marginal operational issue but a central component of firms' pricing, inventory management, and market development strategies [1].

The growing prevalence of product returns fundamentally alters the dynamics of inventory systems and pricing decisions. Returned products re-enter inventory streams with uncertain timing and condition, directly affecting stock availability, cash flow stability, and revenue realization [2]. At the same time, return policies interact with

pricing decisions by shaping consumer expectations and purchase behavior. Prices influence not only demand volume but also return propensity, while anticipated return opportunities feed back into consumers' willingness to pay. This bidirectional interaction complicates the traditional logic of dynamic pricing under inventory constraints and challenges firms' ability to design robust pricing strategies.

Despite the extensive literature on dynamic pricing and inventory control, most classical models were developed under simplified assumptions that abstract away from the strategic and behavioral dimensions of returns. These models typically treat demand as a price-dependent but return-free process, or incorporate returns as exogenous parameters with limited behavioral interpretation. While such formulations provide valuable analytical insights, their applicability becomes increasingly constrained in markets where return behavior is widespread, strategic, and closely intertwined with marketing practices.

In parallel, market-oriented development and marketing strategies have gained prominence as essential components of pricing design in return-intensive environments. Pricing decisions are now expected to align with broader objectives such as brand positioning, customer relationship management, and long-term market value creation [3]. From this perspective, pricing is not merely an operational lever for revenue maximization but also a strategic signal that interacts with return policies, promotional activities, and consumer trust. These developments motivate the need for a more integrative understanding of dynamic pricing that goes beyond isolated optimization and incorporates market-oriented considerations.

1.2. Limitations of Existing Research

Although the literature on dynamic pricing is substantial, several limitations become evident when product returns are taken into account. First, many studies treat returns as exogenous or simplified stochastic parameters, thereby overlooking the endogenous and strategic nature of return behavior. Such treatments fail to capture how pricing decisions, return policies, and consumer expectations jointly evolve over time [4].

Second, there exists a persistent disconnect between optimization-based pricing models and market-oriented strategic perspectives. Pricing research rooted in operations management often emphasizes mathematical tractability and short-term revenue outcomes, while marketing and strategy studies focus on consumer perception, brand effects, and long-term value creation. The lack of integration between these streams limits the explanatory power of existing models in complex market environments where returns play a central role.

Third, current research offers limited insight into the feedback mechanisms linking returns, demand, and pricing. Product returns influence future demand through learning, expectation formation, and behavioral adaptation, yet these dynamic feedback loops are rarely modeled explicitly. As a consequence, the system-level implications of pricing decisions—such as demand volatility, inventory instability, and erosion of consumer trust—remain insufficiently understood.

1.3. Research Objectives and Contributions

In response to these limitations, this study aims to develop an integrative perspective on dynamic pricing with product returns under inventory and market-oriented constraints. The primary objective is to synthesize insights from optimization-based pricing models, market-oriented development and marketing strategies, data-driven demand analysis, and mechanism-oriented system thinking into a coherent analytical framework [5].

Specifically, the study re-examines pricing decisions in return-intensive environments from a mechanism-oriented perspective, viewing pricing as an indirect regulatory tool that operates through intermediate structures such as consumer expectations, demand composition, and return behavior. By emphasizing data-driven demand intelligence and market-oriented considerations, the paper highlights how

pricing systems can be designed to enhance adaptability and long-term stability rather than solely optimizing short-term revenue.

2. Optimization-Based Dynamic Pricing with Product Returns

2.1. Classical Dynamic Pricing Models under Inventory Constraints

Optimization-based dynamic pricing models form the core analytical framework for studying pricing decisions under inventory constraints. In these models, pricing is treated as a sequential decision-making process in which firms dynamically adjust prices over time in response to evolving inventory levels and remaining selling horizons. Demand is typically assumed to be price-sensitive and stochastic, and optimal pricing paths are derived to balance immediate revenue extraction against future sales opportunities [6].

A defining feature of this modeling approach is the strong coupling between time, inventory states, and pricing decisions. As inventory decreases, prices are often adjusted upward to ration scarce resources, whereas abundant inventory encourages more aggressive pricing to stimulate demand. This interdependence generates characteristic pricing trajectories that reflect the trade-off between inventory depletion and revenue maximization.

When product returns are introduced, however, this classical structure is fundamentally altered [7]. Returns generate backward flows of inventory that partially offset sales-driven depletion, thereby weakening the monotonic relationship between time and inventory exhaustion. As a result, pricing decisions must account not only for expected future demand but also for uncertain inventory replenishment through returns. This extension highlights that dynamic pricing with returns is no longer a purely forward-looking optimization problem, but one that involves bidirectional inventory dynamics.

2.2. Modeling Product Returns in Pricing Decisions

Incorporating product returns into dynamic pricing models significantly increases both analytical complexity and managerial relevance [8]. From an inventory perspective, returns act as stochastic inflows whose magnitude and timing depend on past sales, consumer behavior, and return policies. From a revenue perspective, returns may involve refunds, processing costs, and quality degradation, all of which reshape the objective function of the pricing problem.

Existing modeling approaches typically represent returns either as deterministic fractions of previous sales or as stochastic processes with known probability distributions. Deterministic formulations offer analytical convenience, while stochastic representations better capture real-world uncertainty. Nevertheless, both approaches often rely on simplified assumptions regarding consumer behavior and information availability.

The presence of returns introduces feedback effects that complicate pricing decisions. Higher prices may reduce demand but also lower future return volumes, while aggressive pricing may boost sales at the cost of increased return risk. These interactions imply that optimal pricing paths may exhibit non-monotonic behavior, challenging traditional pricing heuristics derived from no-return settings. Consequently, ignoring return behavior can lead to systematic pricing distortions, inefficient inventory utilization, and unstable revenue performance.

Moreover, in many contemporary markets, return behavior is not purely exogenous. Generous return policies are frequently employed as strategic tools to reduce consumer purchase risk, signal product quality, and enhance market competitiveness. In such environments, return rates are shaped by pricing strategies, marketing communication, and consumer expectations, blurring the boundary between operational constraints and strategic design variables [9].

2.3. Insights and Limitations of Optimization-Based Approaches

Optimization-based dynamic pricing models with product returns provide valuable normative insights. They clarify the structural trade-offs among pricing decisions, inventory dynamics, and revenue outcomes under explicitly defined assumptions. These

models are particularly useful for benchmarking pricing performance and for understanding how return mechanisms reshape optimal pricing logic.

However, several limitations constrain their direct applicability. First, these models often rely on strong rationality assumptions, treating consumers as fully informed agents whose purchasing and return decisions follow stable probabilistic rules. In practice, return behavior is influenced by psychological factors, contextual information, and bounded rationality, which are difficult to reconcile with purely analytical formulations.

Second, optimization-based approaches typically assume a high degree of information completeness, including accurate knowledge of demand functions, return probabilities, and timing structures. In dynamic and competitive markets, such information is rarely available with sufficient precision, raising concerns about the robustness and implementability of theoretically optimal pricing policies.

Third, most models emphasize short-term revenue optimization, with limited consideration of broader market-oriented objectives such as brand reputation, customer loyalty, and long-term demand stability. Pricing decisions in return-intensive markets often function as strategic signals that shape consumer expectations and future behavior, effects that extend beyond the scope of traditional optimization frameworks [10].

From a broader systems perspective, these limitations suggest that direct price optimization alone may be insufficient in environments characterized by feedback, uncertainty, and adaptation. Insights from complex system regulation indicate that stable performance often emerges from indirect, mechanism-oriented interventions rather than direct control of outcome variables. Applying such perspectives to dynamic pricing with product returns points toward the need for integrative frameworks that combine optimization, market orientation, and system-level regulation.

3. Market-Oriented Development and Pricing under Return Environments

3.1. Market-Oriented Development in Return-Intensive Markets

Market-oriented development emphasizes the alignment of firm decisions with evolving customer needs, competitive dynamics, and long-term market positioning. Rather than focusing narrowly on short-term operational efficiency, this perspective treats pricing, inventory policies, and service mechanisms as integrated strategic instruments that jointly shape market outcomes. In return-intensive markets, such as e-commerce, fashion retail, and service platforms, this orientation becomes particularly critical [11].

Product return policies are no longer passive operational constraints but active components of market competition. Generous return options reduce perceived purchase risk, lower entry barriers for hesitant consumers, and expand potential demand. At the same time, return policies signal confidence in product quality and customer-centric values, thereby influencing brand image and market positioning [12]. As a result, returns should be understood not merely as inventory inflows but as strategic variables embedded within broader market-oriented development frameworks.

Pricing decisions are deeply embedded within this strategic context. Prices interact with return policies to jointly determine consumer expectations and purchase behavior. A low price combined with a lenient return policy may stimulate trial purchases but increase operational risk, whereas a premium price paired with restrictive returns may limit demand but reinforce exclusivity. From a market-oriented perspective, optimal pricing cannot be determined independently of return design, branding objectives, and long-term customer relationships.

This embeddedness challenges the traditional view of dynamic pricing as a purely technical optimization problem. Instead, pricing under return environments must be evaluated in terms of its coherence with overall market strategy, customer value propositions, and competitive positioning.

3.2. Pricing, Returns, and Consumer Perception

Consumer perception plays a central role in mediating the effects of pricing and return policies. Price levels influence not only purchase decisions but also expectations

regarding product quality, post-purchase satisfaction, and the likelihood of returning items. Similarly, return flexibility affects how consumers interpret prices, shaping perceived fairness, risk, and value.

The interaction between pricing and return leniency generates complex behavioral responses. Higher prices may heighten consumer expectations, making customers more sensitive to perceived mismatches between expectations and actual product experience, potentially increasing return propensity. Conversely, lenient return policies can mitigate perceived risk and increase willingness to accept higher prices, particularly in experience goods where quality uncertainty is high.

Consumer expectations further amplify these effects through reference-dependent behavior. Past prices, promotional histories, and communicated return conditions form mental benchmarks against which current offers are evaluated. Pricing decisions thus function as signals that influence not only immediate demand but also long-term perceptions of reliability and trustworthiness.

Over time, consistent pricing and return strategies contribute to brand trust. Stable and transparent pricing, combined with predictable return processes, fosters confidence and reduces cognitive transaction costs for consumers. In contrast, volatile pricing or opaque return conditions may generate suspicion, erode trust, and increase opportunistic behavior, including excessive or strategic returns [13].

These perceptual dynamics highlight a key limitation of pricing models that treat returns as exogenous random variables. In reality, return behavior is endogenously shaped by pricing signals, policy design, and accumulated consumer experience. Recognizing this endogeneity is essential for designing pricing strategies that are not only revenue-efficient but also perception-consistent and trust-enhancing [14].

3.3. Managerial Implications

From a managerial perspective, a market-oriented view calls for a strategic shift from “return suppression” to “return management.” Attempts to simply reduce return rates through restrictive policies may undermine demand, damage brand reputation, and conflict with market expectations. Instead, effective firms seek to manage return behavior by aligning pricing, communication, and service design.

Pricing plays a critical role in this transformation. Rather than serving solely as a revenue extraction mechanism, pricing can be used to guide demand, segment consumers, and share risk between firms and customers [15]. For example, differentiated pricing structures may be combined with tiered return options, allowing consumers to choose between lower prices with stricter return conditions and higher prices with greater flexibility. Such designs acknowledge heterogeneity in risk preferences and enhance perceived fairness.

Moreover, dynamic pricing strategies can be employed to smooth demand and manage inventory risk in return-intensive settings. By adjusting prices in response to observed return patterns and consumer responses, firms can indirectly influence future return volumes without explicitly tightening policies. This indirect approach aligns with market-oriented principles by respecting consumer autonomy while guiding system behavior [16].

Finally, managers must recognize that pricing decisions have long-term consequences beyond immediate financial outcomes. Persistent misalignment between prices, return policies, and consumer expectations can lead to demand volatility, opportunistic behavior, and erosion of trust. Conversely, coherent pricing strategies embedded within a clear market-oriented framework can enhance resilience, stabilize demand, and support sustainable growth.

4. Demand Uncertainty and Data-Driven Pricing with Returns

4.1. Sources of Demand and Return Uncertainty

Demand uncertainty is a fundamental challenge in dynamic pricing, and the presence of product returns significantly amplifies this uncertainty. In return-intensive

markets, demand is no longer determined solely by consumers' willingness to purchase but is jointly shaped by purchase, usage, and return decisions. These decisions are influenced by heterogeneous consumer preferences, information availability, and strategic considerations.

Consumer heterogeneity represents a primary source of uncertainty. Different consumers vary in their risk tolerance, product knowledge, and sensitivity to price and return policies. Some consumers exhibit strategic return behavior, such as ordering multiple variants with the intention of returning most items, while others may treat lenient return policies as insurance against quality uncertainty. Such heterogeneity makes aggregate demand highly volatile and difficult to predict, particularly when pricing and return conditions change over time.

Information asymmetry and market feedback delays further complicate demand estimation. Firms typically observe sales and returns with time lags, and return outcomes may only be realized after consumption or trial periods. As a result, current pricing decisions are often based on incomplete or outdated information about true demand and return propensities. This delayed feedback weakens the effectiveness of reactive pricing strategies and increases the risk of systematic mispricing.

In addition, price changes can exert reverse effects on return behavior. While lower prices may stimulate demand, they can also attract more price-sensitive or opportunistic consumers who exhibit higher return rates. Conversely, higher prices may suppress initial demand but reduce return probability by filtering out low-commitment purchases. This inverse relationship between price and return rates introduces a feedback loop in which pricing decisions influence not only sales volume but also the quality and stability of realized demand.

Together, these factors imply that demand and returns are jointly uncertain, endogenously linked, and dynamically evolving. Treating either demand or returns as exogenous parameters risks overlooking critical behavioral and informational mechanisms that shape observed outcomes.

4.2. Data-Driven Approaches to Demand and Return Modeling

Data-driven approaches offer a powerful means to address demand and return uncertainty by transforming observed market signals into actionable pricing intelligence. Unlike traditional analytical models that rely on predefined functional forms, data-driven methods leverage diverse information sources to capture behavioral complexity and contextual variation.

Market research and user behavior data provide foundational insights into demand drivers and return motivations. Transaction histories, browsing behavior, product reviews, and post-purchase feedback reveal patterns that cannot be inferred from price and quantity data alone. These data sources enable firms to distinguish between genuine demand fluctuations and behavior driven by policy design or information gaps.

Advances in personalized recommendation systems and context-aware modeling further enhance demand and return prediction. By incorporating consumer-specific attributes, situational factors, and real-time signals, firms can estimate heterogeneous response functions that vary across individuals and contexts. Such models allow pricing strategies to account for differential return risk across customer segments rather than relying on uniform assumptions.

Importantly, data-driven methods complement rather than replace traditional demand functions. While classical models provide structural clarity and theoretical benchmarks, data-driven approaches enrich these models by relaxing restrictive assumptions and introducing adaptive elements. Demand and return are no longer treated as fixed functions of price but as evolving constructs that can be continuously learned from market interactions.

This learning-oriented perspective reframes uncertainty as a manageable feature of the system. Instead of seeking precise *ex ante* demand estimates, firms focus on improving inference quality over time, using data to update beliefs and refine pricing decisions. In

return-intensive environments, such adaptability is essential for maintaining pricing effectiveness and operational stability.

4.3. Implications for Dynamic Pricing Design

The integration of demand and return learning has profound implications for dynamic pricing design. First, pricing systems must be capable of dynamically updating their understanding of both demand intensity and return propensity. Static parameter estimates quickly become obsolete in environments characterized by behavioral adaptation, policy changes, and market shocks.

Second, dynamic pricing should evolve from rule-based adjustments to learning-oriented systems. In such systems, prices are not only decision variables but also instruments for information acquisition. Carefully designed price variations can reveal consumer sensitivity, return likelihood, and demand composition, enabling more informed future decisions.

This shift necessitates a departure from purely static optimization toward adaptive pricing architectures. Learning-based pricing systems continuously balance revenue generation, inventory control, and information gain. In return environments, this balance is particularly delicate, as aggressive price experimentation may increase return volatility and operational costs.

Finally, data-driven insights and optimization models should be viewed as complementary components of an integrated pricing framework. Optimization models provide discipline, interpretability, and performance guarantees under well-defined assumptions. Data-driven learning supplies flexibility, realism, and responsiveness to behavioral complexity. When combined, these approaches enable pricing systems that are both analytically grounded and empirically adaptive.

5. Mechanism-Oriented Perspective: Returns as an Intermediate Structure

5.1. Pricing with Returns as a Complex Adaptive System

Dynamic pricing with product returns constitutes a complex adaptive system in which pricing decisions, demand realization, return behavior, and inventory evolution are endogenously linked through multiple feedback loops. Price adjustments influence not only immediate purchase decisions but also consumers' expectations regarding product quality, post-purchase risk, and return convenience. These expectations, in turn, shape both demand intensity and return propensity, which subsequently alter effective inventory levels and future pricing feasibility. As a result, pricing outcomes emerge from system-wide interactions rather than direct price–revenue mappings.

The presence of returns amplifies nonlinearity within the pricing system. Marginal price changes may lead to disproportionate shifts in return behavior, particularly in markets characterized by high information asymmetry or experience-based consumption. Moreover, return flows introduce temporal coupling between selling periods, as returned products re-enter inventory with delays and uncertainty. This dynamic coupling creates conditions under which short-term revenue-maximizing prices may destabilize the system by increasing demand volatility, inventory oscillations, or strategic consumer behavior.

From a system perspective, pricing with returns should therefore be understood as an adaptive process operating under bounded rationality and delayed feedback. Stability, resilience, and long-term performance become as important as instantaneous revenue optimization, calling for analytical perspectives that extend beyond static equilibrium analysis.

5.2. Mechanism-Oriented Intervention Logic

A mechanism-oriented perspective emphasizes indirect system regulation rather than direct control of outcome variables. In pricing systems with returns, directly manipulating prices to correct observed performance may be ineffective or even counterproductive, as such interventions ignore the intermediate structures through

which prices exert their influence. Product returns function as a critical intermediate structure that mediates the relationship between pricing decisions and system-level outcomes.

Mechanism-oriented intervention focuses on shaping the structural conditions that govern demand and return behavior. Return policies, information disclosure, and post-purchase service design can alter consumers' perceived risk and expected utility, thereby influencing both purchase and return decisions without requiring aggressive price adjustments. For example, modifying return eligibility conditions or enhancing product information transparency can reduce opportunistic returns while preserving demand, achieving regulatory effects indirectly through behavioral channels.

This approach aligns with insights from complex systems research, where effective regulation often targets intermediary mechanisms rather than terminal outcomes. By acting on return-related structures, firms can guide the system toward more stable trajectories, reducing extreme fluctuations in demand and inventory while maintaining strategic flexibility in pricing decisions.

5.3. Implications for Market-Oriented Pricing Design

Viewing returns as an intermediate structure reframes dynamic pricing as a system-guiding instrument rather than a pure control variable. Market-oriented pricing design should therefore prioritize the coordination of pricing, return policies, and consumer communication to influence demand composition and behavioral responses over time. Instead of attempting to suppress returns through punitive pricing or restrictive measures, firms can manage return behavior by aligning pricing strategies with market expectations and perceived value.

This perspective highlights the importance of long-term stability and adaptability in pricing systems. Sustainable pricing strategies are those that balance revenue objectives with system resilience, consumer trust, and behavioral predictability. By incorporating mechanism-oriented thinking, market-oriented pricing design can move beyond reactive price adjustments toward proactive system shaping, enabling firms to operate effectively in environments characterized by uncertainty, strategic consumers, and pervasive return mechanisms.

6. An Integrative Framework and Future Research Directions

6.1. An Integrative Conceptual Framework

Building on the preceding analysis, this study proposes an integrative conceptual framework for dynamic pricing under inventory and return environments. The framework synthesizes four interrelated dimensions: optimization-based dynamic pricing models, product return mechanism modeling, market-oriented development and marketing strategies, and data-driven, mechanism-oriented system regulation.

At the analytical core, optimization-based pricing models provide a structured foundation for understanding the trade-offs among pricing decisions, inventory evolution, and revenue performance. These models formalize the intertemporal nature of pricing under inventory constraints and clarify how returns affect feasible pricing paths and inventory availability. However, their effectiveness depends critically on how returns and demand are represented within the system.

The second dimension explicitly incorporates return mechanisms as endogenous components of pricing systems. Rather than treating returns as exogenous shocks or fixed parameters, the framework emphasizes their role as behavioral responses influenced by prices, policies, and consumer expectations. Modeling returns in this way reveals their function as intermediate structures that connect pricing decisions to inventory dynamics and long-term system outcomes.

The third dimension embeds pricing decisions within broader market-oriented development and marketing strategies. Pricing is conceptualized not only as a revenue optimization tool but also as a strategic signal that interacts with branding, promotion, and customer relationship management. This perspective highlights the necessity of

aligning pricing and return policies with market positioning and long-term value creation objectives.

Finally, the framework incorporates data-driven and mechanism-oriented system regulation. Data-driven demand and return intelligence enables continuous learning and adaptation, transforming static demand assumptions into dynamic, evolving structures. Mechanism-oriented regulation further shifts attention from direct price control toward indirect interventions that shape system behavior through return policies, information disclosure, and consumer perception management. Together, these elements form a coherent framework for understanding dynamic pricing as a system-level design problem.

6.2. Research Gaps and Future Directions

Despite significant advances, several important research gaps remain. One critical direction concerns the endogenization of return behavior within pricing models. Future research could develop integrated frameworks in which demand, returns, and pricing decisions co-evolve, capturing strategic consumer behavior and feedback effects more realistically.

A second avenue lies in the deeper integration of market strategy and pricing optimization. Existing studies often separate analytical pricing models from marketing considerations. Hybrid approaches that explicitly incorporate strategic variables—such as brand trust, perceived fairness, and customer lifetime value—into pricing optimization could substantially enhance managerial relevance.

Third, long-term performance and stability remain underexplored. Most dynamic pricing studies prioritize short-term revenue or regret minimization, while overlooking system-level outcomes such as demand volatility, inventory oscillations, and consumer adaptation. Adopting a complex adaptive systems perspective may help scholars investigate how pricing and return strategies influence resilience and sustainability over extended horizons.

6.3. Conclusions

This study contributes to the dynamic pricing literature by offering an integrative, mechanism-oriented perspective on pricing under inventory and return constraints. By synthesizing optimization models, return mechanism analysis, market-oriented strategy, and data-driven system regulation, the paper reframes dynamic pricing as a system-guiding intervention rather than a purely computational problem. For practitioners, the framework underscores the importance of coordinating pricing, return policies, and market strategy to achieve stable and adaptive pricing systems in complex and uncertain environments.

References

1. J. Otte, K. Serfes, and V. Thiele, "Product returns, customer segmentation, and dynamic pricing in the online retail market," *J. Econ. Manage. Strategy*, vol. 34, no. 4, pp. 899–917, Winter 2025.
2. D. Rahmani and A. Pashapour, "Dynamic pricing decision for new and returned products in a dual-channel supply chain based on customer segmentation," *Soft Comput.*, vol. 28, no. 23, pp. 13205–13224, Dec. 2024.
3. G. Wang, "Performance evaluation and optimization of photovoltaic systems in urban environments," *Int. J. New Dev. Eng. Soc.*, vol. 9, pp. 42–49, 2025, doi: 10.25236/IJNDES.2025.090106.
4. C. Yang, Y. Feng, and A. Whinston, "Dynamic pricing and information disclosure for fresh produce: An artificial intelligence approach," *Prod. Oper. Manage.*, vol. 31, no. 1, pp. 155–171, Jan. 2022.
5. P. Ambilkar, V. Dohale, A. Gunasekaran, and V. Bilolikar, "Product returns management: a comprehensive review and future research agenda," *Int. J. Prod. Res.*, vol. 60, no. 12, pp. 3920–3944, Jun. 2022.
6. H. Matsumoto, T. Gu, S. Yo, M. Sasahira, S. Monden, T. Ninomiya, M. Osawa, O. Handa, E. Umegaki, and A. Shiotani, "Fecal microbiota transplantation using donor stool obtained from exercised mice suppresses colonic tumor development induced by azoxymethane in high-fat diet-induced obese mice," *Microorganisms*, vol. 13, no. 5, p. 1009, 2025.
7. K. Cao and T. M. Choi, "Optimal trade-in return policies: Is it wise to be generous?," *Prod. Oper. Manage.*, vol. 31, no. 3, pp. 1309–1331, Mar. 2022.
8. X. Hu, Z. Wan, and N. N. Murthy, "Dynamic pricing of limited inventories with product returns," *Manufacturing & Service Operations Management*, vol. 21, no. 3, pp. 501–518, 2019, doi: 10.1287/msom.2017.0702

9. J. Zhao, "'To IPO or Not to IPO' - Recent 2025 IPOs and AI Valuation Framework", *Financial Economics Insights*, vol. 2, no. 1, pp. 131–143, Dec. 2025, doi: 10.70088/hhczb769.
10. B. A. A. Solem, J. I. Fredriksen, and Ø. Sørebø, "Dynamic capabilities in the realisation of omnichannel retailing," *Int. J. Retail Distrib. Manage.*, vol. 51, no. 1, pp. 21–38, Jan. 2023.
11. X. Zhang, "The Enabling Path of Private Equity Funds in the Growth Process of Emerging Market Enterprises", *Econ. Manag. Innov.*, vol. 2, no. 5, pp. 94–102, Oct. 2025, doi: 10.71222/511cpx26.
12. S. Liu, G. Hua, T. E. Cheng, and T. M. Choi, "Optimal pricing and quality decisions in supply chains with consumers' anticipated regret and online celebrity retailers," *IEEE Trans. Eng. Manage.*, vol. 71, pp. 1115–1129, 2024.
13. S. Yuan, "Data Flow Mechanisms and Model Applications in Intelligent Business Operation Platforms", *Financial Economics Insights*, vol. 2, no. 1, pp. 144–151, 2025, doi: 10.70088/m66t6m53.
14. W. Sun, "Integration of Market-Oriented Development Models and Marketing Strategies in Real Estate," *European Journal of Business, Economics & Management*, vol. 1, no. 3, pp. 45–52, 2025
15. B. Chen, Y. Wang, and Y. Zhou, "Optimal policies for dynamic pricing and inventory control with nonparametric censored demands," *Manage. Sci.*, vol. 70, no. 5, pp. 3362–3380, May 2024.
16. B. Wu, "Market research and product planning in e-commerce projects: A systematic analysis of strategies and methods," *Academic Journal of Business & Management*, vol. 7, no. 3, pp. 45–53, 2025, doi: 10.25236/AJBM.2025.070307.

Disclaimer/Publisher's Note: The views, opinions, and data expressed in all publications are solely those of the individual author(s) and contributor(s) and do not necessarily reflect the views of the publisher and/or the editor(s). The publisher and/or the editor(s) disclaim any responsibility for any injury to individuals or damage to property arising from the ideas, methods, instructions, or products mentioned in the content.