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Abstract: This study examines how digital monitoring systems, including IoT sensing and
automated carbon dashboards, support carbon reduction in manufacturing enterprises. The
analysis focuses on 62 factories across electronics, machining, and chemical industries. Results show
that real-time carbon tracking reduced energy waste by 12%, while automated equipment
scheduling achieved an additional 9% reduction. Process-level carbon mapping also helped
companies detect high-emission segments and optimize production planning. The findings
demonstrate that digital tools significantly enhance carbon visibility and enable data-driven
sustainability strategies.
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1. Introduction

Manufacturing is widely recognized as a major source of global greenhouse gas
emissions, and reducing emissions has become an essential objective for governments and
enterprises seeking to achieve long-term climate commitments [1]. In recent years, digital
technologies-including industrial IoT, online monitoring platforms, and data-driven
decision systems-have been increasingly viewed as enablers of cleaner and more efficient
production [2]. Empirical evidence from national- and industry-level datasets shows that
the relationship between digitalization and emissions is non-linear: while initial stages of
digital adoption may increase energy consumption due to equipment upgrades and
additional data-processing needs, deeper digital integration tends to produce measurable
reductions in energy use and carbon emissions [3]. Similar findings have been reported
across countries with varying industrial structures, suggesting that the carbon impact of
digitalization depends not only on technological capability but also on how digital tools
are embedded within production systems and regulatory environments [4]. At the factory
level, real-time monitoring of energy and carbon has become central to low-carbon
manufacturing strategies. IoT sensors, smart meters, and equipment-level data collectors
enable factories to record energy use at short intervals, identify abnormal operating
patterns, and locate machine-level inefficiencies with greater accuracy [5]. Case studies in
electronics, machining, and other discrete manufacturing sectors show that these systems
help reduce standby losses, improve maintenance planning, and enhance equipment
utilization [6]. Recent developments further integrate online monitoring with automated
carbon accounting modules, enabling factories to generate continuous emission profiles
instead of relying solely on periodic reporting [7]. Digital twins and other cyber-physical
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simulation models offer additional opportunities by allowing manufacturers to test
alternative production plans, evaluate process parameters, and optimize scheduling
under energy constraints [8]. However, multiple reviews indicate that many digital
systems remain limited to data visualization, while critical operational decisions-such as
determining optimal time windows for running high-load equipment-often rely on
manual judgment rather than automated optimization algorithms [9].

Beyond the technical perspective, research in sustainable operations emphasizes that
digitalization produces meaningful environmental gains only when it is combined with
systematic process-improvement frameworks. Recent evidence shows that integrating
digital monitoring with lean-based approaches can reduce material waste, enhance
process visibility, and strengthen continuous improvement cycles in manufacturing [10].
Such studies highlight that digital tools must support actionable decision-making-such as
anomaly-driven control, dynamic load adjustment, and process-level optimization-rather
than functioning solely as data-collection platforms. This integrated perspective also
aligns with findings from broader sustainability literature, which stresses that effective
carbon reduction requires coupling real-time information with mechanisms that modify
production behavior at the equipment and process levels [11]. Despite these advances,
significant research gaps remain. First, many existing studies rely on aggregated regional
or sector-level datasets, which are useful for identifying macro trends but lack the
granularity needed to evaluate how digital monitoring affects emissions within factories
or at the machine level [12]. Second, factory-level research is often limited to one or two
case sites, making it difficult to generalize findings across industries with distinct process
characteristics, operational constraints, and equipment mixes [13,14]. Third, while
substantial attention has been devoted to data acquisition and visualization technologies,
relatively few studies link real-time monitoring with automated scheduling, anomaly-
driven energy adjustments, or process-level carbon mapping capable of supporting
detailed production planning [15]. Finally, there is a lack of large-sample, multi-industry
evidence examining how integrated digital monitoring systems perform under actual
operating conditions.

This study analyzes 62 factories across multiple industries that have adopted
integrated digital monitoring systems combining IoT sensing, automated carbon
dashboards, and equipment-scheduling modules. The analysis focuses on three
operational mechanisms through which digital monitoring can reduce carbon emissions:
(1) decreasing energy waste through real-time anomaly detection, (2) lowering emissions
by using automated scheduling to optimize the operation of high-load equipment, and (3)
identifying high-emission process segments through detailed carbon mapping to support
production planning. By drawing on a large and diverse sample, this study provides
empirical evidence on how digital monitoring improves carbon performance in real
factory environments. The findings aim to guide researchers and practitioners in
transforming digital visibility into operational decisions that deliver measurable emission
reductions, thereby deepening the understanding of how digital technologies contribute
to sustainable manufacturing.

2. Materials and Methods
2.1. Sample and Study Area Description

This study includes 62 factories from electronics, machining, and chemical
production. All factories operate regular weekday schedules and run continuous or semi-
continuous production lines. Electricity is the main source of energy, and some sites also
use natural gas for heating steps. The sample was chosen to cover different factory sizes,
equipment types, and levels of digital monitoring. Each site had basic IoT sensors in place
before data collection. These sensors recorded energy use, machine status, and operating
hours under normal production conditions. No changes were made to production tasks
during the sampling period, ensuring that all measurements reflect typical daily operation.
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2.2. Experimental Design and Control Comparison

A before-after design was used to evaluate the effect of digital monitoring. The
control period refers to factory operation without real-time monitoring, when
measurements depended on manual checks and periodic meter readings. The
experimental period refers to operation after IoT sensors, carbon dashboards, and
scheduling tools were installed. Production plans, shift schedules, and work hours
remained stable across both periods to minimize unrelated differences. This design allows
a direct comparison between the two conditions and provides a clear basis for assessing
changes in energy use and carbon emissions.

2.3. Measurement Methods and Quality Control

Energy use was measured with smart meters that had one-minute recording intervals.
All meters were tested and verified before installation. Carbon emissions were calculated
using local electricity emission factors. IoT sensors collected data on voltage, current,
machine load, and runtime. Data were transmitted through secure wired networks to
avoid signal loss. A 72-hour run-in period was applied to ensure stable operation before
formal measurements. Daily checks were performed to identify missing records,
abnormal peaks, and communication errors. Data affected by equipment faults or
unexpected shutdowns were removed from the dataset to maintain consistency.

2.4. Data Processing and Model Formulation

Raw data were cleaned by removing faulty readings and aligning timestamps.
Measurements were averaged into 15-minute intervals. Energy and carbon intensity were
calculated for each main production step. A fixed-effects regression model was used to
estimate the effect of digital monitoring. The model is written as:

Y=ot BDty Xt tej

where Y;, is energy use or carbon emissions for factory i at time t; D;; indicates
whether digital monitoring was in place; X;; includes productionload and working hours;
and p, captures fixed site-specific factors.

To evaluate equipment-level savings, a simple performance index was used:

Ebaseline'Emonitoring

Saving Rate=
Ebaseline
where Ejageline and Eponitoring T€Present energy use before and after monitoring.

3. Results and Discussion
3.1. Effects of Real-Time Monitoring on Energy Use

Real-time monitoring reduced energy waste by an average of 12% across the 62
factories (Figure 1). The reduction mainly came from identifying idle running, standby
loss, and short load spikes that were previously unnoticed during manual inspections.
Electronics plants reduced losses from HVAC and compressed air, while machining
plants corrected abnormal spindle loads. Chemical plants improved heating and pump
control through more consistent tracking. These changes were achieved without
modifying production plans. Our findings are consistent with earlier work showing that
visible machine-level energy data help operators respond faster to unusual consumption
patterns [16]. For example, a study on an IoT-based monitoring system reported similar
improvements after installing high-frequency energy meters in manufacturing lines.
Unlike earlier case studies that focused on a single line, our results include multiple
sectors and real factory schedules, giving broader evidence of the effect of continuous
monitoring [17].
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Figure 1. Diagram of the carbon-monitoring system with IoT sensors, data links, and the main
dashboard.

3.2. Impact of Automated Scheduling on Emissions and Throughput

Automated scheduling produced an additional 9% reduction in emissions. The
system shifted non-urgent tasks-such as curing, auxiliary pumping, and certain surface-
treatment steps-to lower-carbon periods identified from grid intensity data. In machining
plants, grouping high-load tasks helped reduce repeated start-stop cycles. Daily output
was not affected. Previous studies using plant-level scheduling tools often showed strong
prediction accuracy but provided limited evidence of actual production changes. A
digital-twin-based scheduling study reported energy savings but did not link them to
carbon outcomes [18]. Our results show that simple rule-based scheduling, combined with
reliable carbon measurements, can reduce emissions across different manufacturing
sectors without the need for complex optimization models.

3.3. Process-Level Carbon Mapping and High-Emission Processes

Process-level carbon maps revealed clear high-emission segments (Figure 2).
Electronics plants showed high values in cleanroom HVAC and reflow ovens. Machining
plants were dominated by compressed-air systems, spindles, and coolant pumps.
Chemical plants showed high emissions in heating and solvent recovery. These maps
helped factories identify where upgrades or process changes would have the greatest
effect. Similar mapping ideas have been used in studies that analyze energy signatures in
CNC systems for fault detection or efficiency improvement [19-21]. Our results extend
this approach by attaching carbon factors to each process stage and linking them to
production planning.
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Figure 2. Carbon map showing the emission levels of key equipment groups across the production
steps.
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3.4. Comparison with Existing Research and Practical Implications

The combined 12% reduction from monitoring and 9% reduction from scheduling
aligns with the range reported in recent studies on digital energy management in
industrial systems. Previous research on IoT-based monitoring in buildings, logistics
centers, and small factories also showed that simple feedback loops can lower electricity
use [22-24]. Unlike those environments, however, manufacturing plants operate under
strict safety and quality rules. Despite these constraints, all 62 factories maintained or
improved throughput while reducing emissions, showing that the approach is suitable
for real industrial conditions. Some limitations were observed. Several factories showed
missing or unstable sensor data, which reduced the accuracy of carbon maps. Similar
issues have been reported in studies on non-intrusive energy monitoring and industrial
load prediction, where communication faults produced noisy signals. In addition, many
factories still rely on monthly manual checks to confirm dashboard values, which slows
response time. Future work may expand data coverage to include fuel-based processes,
integrate scheduling tools with more advanced optimization methods, and test
performance under carbon pricing or mandatory reporting rules.

4. Conclusion

This study evaluated how digital monitoring and automated scheduling can reduce
carbon emissions in manufacturing plants. Data from 62 factories showed that real-time
monitoring lowered energy waste by 12%, and simple scheduling rules produced an
additional 9% reduction. These reductions were achieved without changing daily output.
Process-level carbon maps helped locate the steps and equipment with the highest
emissions, giving factories a clearer basis for improving their processes. The study
provides practical evidence from real industrial environments and shows that digital tools
can support emission reduction beyond small pilot trials. The results also suggest that
these tools can be adopted in different industries with limited technical requirements.
However, some limits remain. Several factories had unstable sensor data, and many still
relied on manual checks to confirm dashboard values. The analysis also focused on
electricity-related emissions and did not include fuel use or material-related carbon.
Future work can extend the monitoring scope, test stronger scheduling methods, and
examine the effect of policy measures such as carbon pricing on system performance.
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