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Abstract: This study examines how digital monitoring systems, including IoT sensing and 

automated carbon dashboards, support carbon reduction in manufacturing enterprises. The 

analysis focuses on 62 factories across electronics, machining, and chemical industries. Results show 

that real-time carbon tracking reduced energy waste by 12%, while automated equipment 

scheduling achieved an additional 9% reduction. Process-level carbon mapping also helped 

companies detect high-emission segments and optimize production planning. The findings 

demonstrate that digital tools significantly enhance carbon visibility and enable data-driven 

sustainability strategies. 
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1. Introduction 

Manufacturing is widely recognized as a major source of global greenhouse gas 

emissions, and reducing emissions has become an essential objective for governments and 

enterprises seeking to achieve long-term climate commitments [1]. In recent years, digital 

technologies-including industrial IoT, online monitoring platforms, and data-driven 

decision systems-have been increasingly viewed as enablers of cleaner and more efficient 

production [2]. Empirical evidence from national- and industry-level datasets shows that 

the relationship between digitalization and emissions is non-linear: while initial stages of 

digital adoption may increase energy consumption due to equipment upgrades and 

additional data-processing needs, deeper digital integration tends to produce measurable 

reductions in energy use and carbon emissions [3]. Similar findings have been reported 

across countries with varying industrial structures, suggesting that the carbon impact of 

digitalization depends not only on technological capability but also on how digital tools 

are embedded within production systems and regulatory environments [4]. At the factory 

level, real-time monitoring of energy and carbon has become central to low-carbon 

manufacturing strategies. IoT sensors, smart meters, and equipment-level data collectors 

enable factories to record energy use at short intervals, identify abnormal operating 

patterns, and locate machine-level inefficiencies with greater accuracy [5]. Case studies in 

electronics, machining, and other discrete manufacturing sectors show that these systems 

help reduce standby losses, improve maintenance planning, and enhance equipment 

utilization [6]. Recent developments further integrate online monitoring with automated 

carbon accounting modules, enabling factories to generate continuous emission profiles 

instead of relying solely on periodic reporting [7]. Digital twins and other cyber-physical 
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simulation models offer additional opportunities by allowing manufacturers to test 

alternative production plans, evaluate process parameters, and optimize scheduling 

under energy constraints [8]. However, multiple reviews indicate that many digital 

systems remain limited to data visualization, while critical operational decisions-such as 

determining optimal time windows for running high-load equipment-often rely on 

manual judgment rather than automated optimization algorithms [9]. 

Beyond the technical perspective, research in sustainable operations emphasizes that 

digitalization produces meaningful environmental gains only when it is combined with 

systematic process-improvement frameworks. Recent evidence shows that integrating 

digital monitoring with lean-based approaches can reduce material waste, enhance 

process visibility, and strengthen continuous improvement cycles in manufacturing [10]. 

Such studies highlight that digital tools must support actionable decision-making-such as 

anomaly-driven control, dynamic load adjustment, and process-level optimization-rather 

than functioning solely as data-collection platforms. This integrated perspective also 

aligns with findings from broader sustainability literature, which stresses that effective 

carbon reduction requires coupling real-time information with mechanisms that modify 

production behavior at the equipment and process levels [11]. Despite these advances, 

significant research gaps remain. First, many existing studies rely on aggregated regional 

or sector-level datasets, which are useful for identifying macro trends but lack the 

granularity needed to evaluate how digital monitoring affects emissions within factories 

or at the machine level [12]. Second, factory-level research is often limited to one or two 

case sites, making it difficult to generalize findings across industries with distinct process 

characteristics, operational constraints, and equipment mixes [13,14]. Third, while 

substantial attention has been devoted to data acquisition and visualization technologies, 

relatively few studies link real-time monitoring with automated scheduling, anomaly-

driven energy adjustments, or process-level carbon mapping capable of supporting 

detailed production planning [15]. Finally, there is a lack of large-sample, multi-industry 

evidence examining how integrated digital monitoring systems perform under actual 

operating conditions. 

This study analyzes 62 factories across multiple industries that have adopted 

integrated digital monitoring systems combining IoT sensing, automated carbon 

dashboards, and equipment-scheduling modules. The analysis focuses on three 

operational mechanisms through which digital monitoring can reduce carbon emissions: 

(1) decreasing energy waste through real-time anomaly detection, (2) lowering emissions 

by using automated scheduling to optimize the operation of high-load equipment, and (3) 

identifying high-emission process segments through detailed carbon mapping to support 

production planning. By drawing on a large and diverse sample, this study provides 

empirical evidence on how digital monitoring improves carbon performance in real 

factory environments. The findings aim to guide researchers and practitioners in 

transforming digital visibility into operational decisions that deliver measurable emission 

reductions, thereby deepening the understanding of how digital technologies contribute 

to sustainable manufacturing. 

2. Materials and Methods 

2.1. Sample and Study Area Description 

This study includes 62 factories from electronics, machining, and chemical 

production. All factories operate regular weekday schedules and run continuous or semi-

continuous production lines. Electricity is the main source of energy, and some sites also 

use natural gas for heating steps. The sample was chosen to cover different factory sizes, 

equipment types, and levels of digital monitoring. Each site had basic IoT sensors in place 

before data collection. These sensors recorded energy use, machine status, and operating 

hours under normal production conditions. No changes were made to production tasks 

during the sampling period, ensuring that all measurements reflect typical daily operation. 
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2.2. Experimental Design and Control Comparison 

A before-after design was used to evaluate the effect of digital monitoring. The 

control period refers to factory operation without real-time monitoring, when 

measurements depended on manual checks and periodic meter readings. The 

experimental period refers to operation after IoT sensors, carbon dashboards, and 

scheduling tools were installed. Production plans, shift schedules, and work hours 

remained stable across both periods to minimize unrelated differences. This design allows 

a direct comparison between the two conditions and provides a clear basis for assessing 

changes in energy use and carbon emissions. 

2.3. Measurement Methods and Quality Control 

Energy use was measured with smart meters that had one-minute recording intervals. 

All meters were tested and verified before installation. Carbon emissions were calculated 

using local electricity emission factors. IoT sensors collected data on voltage, current, 

machine load, and runtime. Data were transmitted through secure wired networks to 

avoid signal loss. A 72-hour run-in period was applied to ensure stable operation before 

formal measurements. Daily checks were performed to identify missing records, 

abnormal peaks, and communication errors. Data affected by equipment faults or 

unexpected shutdowns were removed from the dataset to maintain consistency. 

2.4. Data Processing and Model Formulation 

Raw data were cleaned by removing faulty readings and aligning timestamps. 

Measurements were averaged into 15-minute intervals. Energy and carbon intensity were 

calculated for each main production step. A fixed-effects regression model was used to 

estimate the effect of digital monitoring. The model is written as: 
Yit=α+βDit+γXit+μ

i
+εit 

where Yit is energy use or carbon emissions for factory i at time t; Dit indicates 

whether digital monitoring was in place; Xit includes production load and working hours; 

and μ
i
 captures fixed site-specific factors. 

To evaluate equipment-level savings, a simple performance index was used: 

Saving Rate=
Ebaseline-Emonitoring

Ebaseline
 

where Ebaseline and Emonitoring represent energy use before and after monitoring. 

3. Results and Discussion 

3.1. Effects of Real-Time Monitoring on Energy Use 

Real-time monitoring reduced energy waste by an average of 12% across the 62 

factories (Figure 1). The reduction mainly came from identifying idle running, standby 

loss, and short load spikes that were previously unnoticed during manual inspections. 

Electronics plants reduced losses from HVAC and compressed air, while machining 

plants corrected abnormal spindle loads. Chemical plants improved heating and pump 

control through more consistent tracking. These changes were achieved without 

modifying production plans. Our findings are consistent with earlier work showing that 

visible machine-level energy data help operators respond faster to unusual consumption 

patterns [16]. For example, a study on an IoT-based monitoring system reported similar 

improvements after installing high-frequency energy meters in manufacturing lines. 

Unlike earlier case studies that focused on a single line, our results include multiple 

sectors and real factory schedules, giving broader evidence of the effect of continuous 

monitoring [17]. 



Journal of Sustainability, Policy, and Practice  Vol. 1, No. 4 (2025) 
 

 192  

 

Figure 1. Diagram of the carbon-monitoring system with IoT sensors, data links, and the main 

dashboard. 

3.2. Impact of Automated Scheduling on Emissions and Throughput 

Automated scheduling produced an additional 9% reduction in emissions. The 

system shifted non-urgent tasks-such as curing, auxiliary pumping, and certain surface-

treatment steps-to lower-carbon periods identified from grid intensity data. In machining 

plants, grouping high-load tasks helped reduce repeated start-stop cycles. Daily output 

was not affected. Previous studies using plant-level scheduling tools often showed strong 

prediction accuracy but provided limited evidence of actual production changes. A 

digital-twin-based scheduling study reported energy savings but did not link them to 

carbon outcomes [18]. Our results show that simple rule-based scheduling, combined with 

reliable carbon measurements, can reduce emissions across different manufacturing 

sectors without the need for complex optimization models. 

3.3. Process-Level Carbon Mapping and High-Emission Processes 

Process-level carbon maps revealed clear high-emission segments (Figure 2). 

Electronics plants showed high values in cleanroom HVAC and reflow ovens. Machining 

plants were dominated by compressed-air systems, spindles, and coolant pumps. 

Chemical plants showed high emissions in heating and solvent recovery. These maps 

helped factories identify where upgrades or process changes would have the greatest 

effect. Similar mapping ideas have been used in studies that analyze energy signatures in 

CNC systems for fault detection or efficiency improvement [19-21]. Our results extend 

this approach by attaching carbon factors to each process stage and linking them to 

production planning. 

 

Figure 2. Carbon map showing the emission levels of key equipment groups across the production 

steps.  
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3.4. Comparison with Existing Research and Practical Implications 

The combined 12% reduction from monitoring and 9% reduction from scheduling 

aligns with the range reported in recent studies on digital energy management in 

industrial systems. Previous research on IoT-based monitoring in buildings, logistics 

centers, and small factories also showed that simple feedback loops can lower electricity 

use [22-24]. Unlike those environments, however, manufacturing plants operate under 

strict safety and quality rules. Despite these constraints, all 62 factories maintained or 

improved throughput while reducing emissions, showing that the approach is suitable 

for real industrial conditions. Some limitations were observed. Several factories showed 

missing or unstable sensor data, which reduced the accuracy of carbon maps. Similar 

issues have been reported in studies on non-intrusive energy monitoring and industrial 

load prediction, where communication faults produced noisy signals. In addition, many 

factories still rely on monthly manual checks to confirm dashboard values, which slows 

response time. Future work may expand data coverage to include fuel-based processes, 

integrate scheduling tools with more advanced optimization methods, and test 

performance under carbon pricing or mandatory reporting rules. 

4. Conclusion 

This study evaluated how digital monitoring and automated scheduling can reduce 

carbon emissions in manufacturing plants. Data from 62 factories showed that real-time 

monitoring lowered energy waste by 12%, and simple scheduling rules produced an 

additional 9% reduction. These reductions were achieved without changing daily output. 

Process-level carbon maps helped locate the steps and equipment with the highest 

emissions, giving factories a clearer basis for improving their processes. The study 

provides practical evidence from real industrial environments and shows that digital tools 

can support emission reduction beyond small pilot trials. The results also suggest that 

these tools can be adopted in different industries with limited technical requirements. 

However, some limits remain. Several factories had unstable sensor data, and many still 

relied on manual checks to confirm dashboard values. The analysis also focused on 

electricity-related emissions and did not include fuel use or material-related carbon. 

Future work can extend the monitoring scope, test stronger scheduling methods, and 

examine the effect of policy measures such as carbon pricing on system performance. 
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