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Abstract: Credit scoring for small and medium enterprises (SMEs) faces a fundamental challenge:
assessing creditworthiness when traditional financial data is unavailable. This paper presents a
semi-supervised feature selection framework that addresses this challenge by leveraging alternative
data sources, ranging from transaction patterns to behavioral signals. We develop a graph-based
approach that reduces the requirement for labeled data by 70% while improving the area under the
curve (AUC) from 0.836 to 0.871, a 4.2 percentage point increase (~5% relative) compared to the best
supervised baseline. The framework integrates bias mitigation techniques, which reduce the
approval-rate gap by 78.9% while maintaining stable default rates across groups, without
compromising model performance. Experiments on 111,579 SME loan applications across three
geographic regions demonstrate that the approach scales efficiently with O (n log n) complexity and
can process 500,000 applications in approximately two hours (<131 minutes for 500k records). The
practical implications are significant: financial institutions can now assess credit risk for businesses
previously considered "unscorable” due to the absence of traditional credit history. This framework
facilitates broader access to capital for millions of SMEs, particularly in developing economies
where formal financial records are limited.
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1. Introduction
1.1. The Credit Access Problem for SMEs

Small and medium enterprises (SMEs) constitute 99.9% of businesses in developed
economies, yet they face disproportionate challenges in accessing credit. The issue stems
from the extensive financial documentation typically required: audited statements, credit
bureau records, and collateral information. Most SMEs, particularly newer ventures and
those operating in informal sectors, do not possess these records.

Consider a typical scenario: a minority-owned business with strong cash flows but
minimal documentation may face rejection rates 2.3 times higher than established
counterparts, despite comparable revenue and market position [1]. This disparity is not
only unfair but also economically inefficient. It arises because existing evaluation tools
fail to capture non-traditional metrics of business health. The problem is even more
pronounced in developing economies. In many African countries, roughly 75% of adults
lack formal financial accounts. In parts of Asia, millions of microenterprises operate
entirely in cash, remaining invisible to conventional credit assessment systems. These
businesses require capital to grow but remain excluded from formal financing channels

[2]-
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1.2. Why Alternative Data Matters

Alternative data sources offer a potential solution by capturing business activity
through non-traditional channels. Payment processors record daily transaction patterns
that can reveal business health more accurately than quarterly statements. For example, a
restaurant's payment patterns from Tuesday to Friday can predict default probability
better than annual revenue figures. Digital interactions-such as website visits, app usage,
and customer service interactions-may signal financial stress weeks before it is reflected
in formal financial statements [3].

Empirical evidence supports this approach. Transaction frequency metrics can
achieve an AUC of 0.73, compared to 0.61 for traditional credit scores alone [4]. This 0.12
improvement represents thousands of potentially creditworthy businesses that
conventional systems might otherwise reject. Supply chain data provides insights into
operational resilience through vendor relationships and payment terms. Social network
indicators capture business connectivity and reputation. Even missing data carries
information; the absence of digital footprints may indicate extreme informality or,
alternatively, sophisticated privacy management.

However, integrating alternative data introduces new challenges. Feature
dimensions expand from dozens to thousands of variables. Many samples lack labels
because default outcomes take months to materialize. Protected attributes, such as race
and gender, may inadvertently leak through proxy variables, creating fairness concerns.
Addressing these challenges requires new methodological approaches.

1.3. Research Contributions

This paper makes three main contributions to address these challenges:

First, we propose a semi-supervised feature selection algorithm tailored for
heterogeneous alternative data. The method employs graph-based label propagation to
leverage unlabeled samples, reducing the need for labeled data by 70% while maintaining
predictive accuracy.

Second, we incorporate bias detection and mitigation directly into the feature
selection process. Rather than treating fairness as a post-processing step, the approach
embeds demographic parity and equalized odds constraints within the optimization
framework.

Third, we provide comprehensive experimental validation on real-world SME
lending data, demonstrating both predictive performance and computational efficiency
suitable for production deployment.

2. Related Work and Background
2.1. Evolution of Credit Scoring Data Sources

Traditional credit scoring emerged in the 1960s around five core variables: payment
history, outstanding debt, credit utilization, account age, and credit mix. These "five C's"
perform well for established businesses with extensive financial records. However,
studies indicate that they explain only 47% of SME default variance, leaving a substantial
portion of risk hidden in non-traditional signals that conventional systems overlook [5].

Alternative data helps fill this gap through diverse information sources:

1) Transaction data: Daily sales patterns, payment frequencies, seasonal variations

2) Behavioral signals: Website engagement, response times, platform usage

patterns

3) Supply chain information: Vendor relationships, payment terms, inventory
turnover

4) Social indicators: Customer reviews, network connections, community
engagement

5)  Geospatial data: Location stability, customer proximity, foot traffic patterns
Each type captures distinct aspects of business health. Transaction data reflects
operational intensity, behavioral signals indicate management quality, and supply chain
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metrics measure resilience. The main challenge is effectively integrating these
heterogeneous sources [6].

2.2. Feature Selection Challenges with High-Dimensional Data

Alternative data introduces a high-dimensionality problem. A typical SME credit
model may include 500-1,000 features from multiple sources. At this scale, conventional
feature selection methods are insufficient. Filter methods, such as chi-square tests,
evaluate features independently and miss important interactions. Wrapper methods that
exhaustively search feature subsets become computationally prohibitive. Embedded
methods like LASSO can handle high dimensions but assume feature homogeneity [7].

The SME context adds further complexity. Features exhibit strong temporal
dependencies-for instance, yesterday's transactions can predict today's risk. Missing
values carry information; the absence of social media presence may indicate either
traditional business practices or financial distress. Different data types require different
preprocessing: transaction amounts need normalization, text data requires encoding, and
network structures need embedding [8].

Recent work has explored advanced selection techniques. Profit-based feature
selection considers both business value and statistical significance [9]. Two-stage
approaches combining filter and wrapper methods have also been proposed [10].
Nevertheless, these methods still depend heavily on labeled data, limiting their
applicability when default examples are scarce.

2.3. Fairness Considerations in Algorithmic Lending

Algorithmic bias in lending is not only an ethical issue but also a business risk.
Models trained on historical data can inherit past discrimination [11]. Protected attributes
such as race and gender often correlate with seemingly neutral variables. For example, zip
codes may encode demographic patterns, business names may reveal gender, and
industry classifications may correlate with immigrant status.

Fairness criteria in the literature often conflict:

1) Demographic parity: Equal approval rates across groups

2) Equalized odds: Equal error rates across groups

3) Individual fairness: Similar treatment for similar applicants

4)  Calibration: Consistent probability interpretations across groups

Kleinberg's impossibility theorem shows that not all fairness criteria can be satisfied
simultaneously except in trivial cases. Real-world systems must balance competing
objectives. Recent approaches integrate fairness constraints directly into model training
rather than applying adjustments post-hoc, ensuring that fairness considerations
influence feature selection and model design from the outset [12].

2.4. Semi-supervised Learning in Financial Applications

A fundamental challenge in credit scoring is the scarcity of labeled data. Each default
label represents significant financial cost and requires 12 or more months to observe.
Meanwhile, unlabeled applications arrive continuously, often in the thousands per day at
large institutions [13]. This creates a pronounced imbalance between labeled and
unlabeled data that semi-supervised learning can exploit.

Semi-supervised learning assumes that the structure of the data contains information
about labels. Businesses that appear similar in feature space are likely to have similar
credit risk. This manifold assumption allows learning from unlabeled data through
several mechanisms:

1)  Self-training: Using confident predictions as pseudo-labels

2)  Co-training: Learning from multiple views of the same data

3) Graph-based methods: Propagating labels through similarity networks

4)  Generative approaches: Modeling the joint distribution of features and labels

Applications of semi-supervised learning in finance have shown promising results.
For instance, label reduction of up to 80% has been achieved using semi-supervised SVMs
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for reject inference [14]. Generalized additive models have also demonstrated the ability
to detect corporate credit anomalies with limited labels [15]. Most prior work, however,
focuses on traditional financial variables rather than heterogeneous alternative data
sources.

3. Methodology
3.1. Data Integration and Preprocessing
3.1.1. Handling Heterogeneous Alternative Data Sources

The primary challenge in using alternative data is heterogeneity. Transaction records
arrive as time series, behavioral data as event logs, supply chain information as networks,
and social signals as text and graphs. A unified representation is required that preserves
the information from each source while enabling joint analysis.

Our approach processes each data type through specialized pipelines:

1) Transaction data pipeline:

Aggregate daily transactions into statistical features such as mean, variance, and
trend

Extract seasonality patterns using Fourier transforms

Compute business-specific metrics, including average ticket size and repeat
customer rate

2) Behavioral data pipeline:

Convert event sequences into session features
Calculate engagement metrics such as frequency, duration, and recency
Extract interaction patterns using sequential pattern mining
3)  Supply chain pipeline:
Represent vendor relationships as graphs
Compute network statistics including degree, centrality, and clustering
Extract payment term distributions
4)  Social data pipeline:
Process text reviews using sentiment analysis
Calculate reputation scores from ratings
Measure network influence metrics

3.1.2. Normalization Strategies for Different Business Scales

Business scale varies widely; for example, a food truck may process $500 daily, while
a wholesale distributor handles $50,000. Raw values can conflate size with risk. We
implement sector-aware normalization as follows: the normalized value equals the raw
value minus the sector mean, divided by the sector standard deviation.

This transformation accounts for industry context. For instance, $10,000 monthly
revenue may be excellent for a craft business but concerning for a retail store. Sectors are
determined using business registration codes and validated through transaction patterns.
When sector information is ambiguous, clustering groups similar businesses.

Temporal normalization addresses day-of-week and trend effects using multiple
windows:

1) 7-day moving average to capture trends

2) Same-day-last-week comparison for seasonality

3) 30-day average for stability

These perspectives capture different aspects of business dynamics.

3.1.3. Missing Data Strategies

Missing values in alternative data are informative. Businesses without social media
presence differ from those with inactive accounts; cash-only operations lack digital
transaction records. We preserve this information through:

1) Missingness indicators: Binary flags for missing values

2)  Pattern encoding: Representing missing patterns as categorical features
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3) Informed imputation: Estimating likely values using similar businesses

4)  Multiple imputation: Creating several plausible complete datasets

For numerical features, we apply iterative imputation by repeatedly predicting
missing values using other features and updating them until convergence. This maintains
inter-variable relationships while acknowledging uncertainty.

As shown in Table 1, alternative data characteristics vary in dimensionality, missing
rates, and update frequency.

Table 1. Alternative Data Source Characteristics.

Di ionalit Updat
Data Category Features tmenstonatt Missing Rate peate
y Frequency
Payment
T ti t
ransacton MO, 127 12.3% Real-time
History frequency,
regularity
Platform
Behavioral
chaviora engagement, 89 34.6% Daily
Signals .
response times
Vendor
Supply Chain diversity, 56 45.2% Weekly
payment terms
Connection
Social strength, o
Network interaction 198 67.8% Hourly
patterns
Location
tabilit
Geospatial StabILy; 34 8.9% Daily
customer
proximity

As shown in Figure 1, the multi-source data integration pipeline consolidates
heterogeneous inputs into a unified 512-dimensional representation ready for
featureselection.

N 127 features
Transaction )
Data Statistical

Moments

W
Signals LSTM Feature

Encoder Integration —
Supply Chain B Concatenation ;';'f:’ed
Network Normalization R i Itn;t'
Graph Dimension epresentation
®lfes Convolution Reduction

Social
Network

an Network
Geospatial ° Embedding
Data

Figure 1. Multi-source Data Integration Pipeline.

Architecture flows left to right: heterogeneous inputs enter parallel extraction
channels. Transaction streams compress into statistical moments. Behavioral sequences
encode through LSTMs. Supply networks flatten via graph convolutions. Convergence
point: unified 512-dimensional representation ready for selection.

3.2. Semi-Supervised Feature Selection Framework
3.2.1. Graph Construction for Business Similarity

The core insight is that similar businesses likely share similar credit risk. We
construct a similarity graph where nodes represent loan applications and edges connect
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similar businesses. Edge weights are computed using a Gaussian function of distance,
where the distance between two businesses combines Euclidean distance for numerical
features, Hamming distance for categorical features, edit distance for text, and graph
kernel similarity for network features.

Bandwidth selection is critical: too small disconnects the graph; too large makes all
businesses appear similar. Cross-validation typically sets the bandwidth near the 5th
percentile of pairwise distances. This graph captures supply chain clusters and seasonal
communities, enabling label propagation.

3.2.2. Label Propagation Algorithm

Label propagation iteratively spreads known labels through the similarity graph. For
each unlabeled node, the label probability is updated as the weighted average of neighbor
labels, and confidence is measured by the entropy of the predicted distribution.

Enhancements include:

1) Confidence weighting: High-confidence predictions influence neighbors more

2)  Class balancing: Adjust for imbalanced default rates

3) Temporal ordering: Propagate from recent to older applications

4)  Early stopping: Halt when predictions stabilize

As shown in Table 2, the algorithm typically converges within 15-20 iterations.

Table 2. Label Propagation Performance Metrics.

Iteration Label Pseudo-label Coverage Rate Time
Consistency Confidence (seconds)
1 0.623 0.456 23.4% 1.2
0.812 0.678 67.8% 6.1
10 0.891 0.823 89.3% 12.3
15 0.908 0.867 94.6% 18.5
20 0.912 0.871 95.1% 247

3.2.3. Pseudo-label Generation and Confidence Scoring

Pseudo-labels are generated only for high-confidence predictions using an adaptive
threshold that starts at 0.9 and gradually relaxes according to the iteration number and a
decay rate (typically 0.3). Confidence scoring considers prediction entropy, neighbor
agreement, feature completeness, and temporal relevance. Typically, 70-80% of unlabeled
data receive pseudo-labels.

As shown in Figure 2, the semi-supervised feature selection framework integrates
three modules: graph construction, label propagation with confidence weighting, and
feature ranking via ensemble voting. Feedback loops dynamically adjust thresholds based
on validation performance.

N

r N\ r
Graph Constructor Propagation Engine Feature Ranking
Build Propagdte

Graph Labell
Similarity Matrix [ Label Spreading ] [ Importance Score ]
kNN Graph Building [ Confidence Scoring ] [ Ensemble Voting ]

J

L J L
Nt /:nput /

Labeled Data Unlabeled Data
(~30%) (~70%) :

Selected Features
Top-k Important

Output
Dynamic Threshold Adjustment
T(t) = Tox (1- B x t/T)

Validation Performance Feedback

..............................

Figure 2. Semi-supervised Feature Selection Architecture.
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3.2.4. Feature Importance Ranking

Feature importance combines supervised measures (gradient boosting, permutation
importance, SHAP values) and unsupervised measures (variance explained, clustering
tendency, network centrality). The final importance score is a weighted combination,
where the weight is proportional to the availability of labeled data.

3.3. Bias Detection and Mitigation
3.3.1. Identifying Proxy Variables for Protected Attributes

Protected attributes may leak through proxy variables. We quantify leakage using
mutual information divided by the entropy of the protected attribute. High scores indicate
potential proxies. Instead of removing them, we transform these features to preserve
business-relevant information while reducing demographic leakage.

3.3.2. Fairness Constraints in Optimization

Fairness is incorporated into feature selection by minimizing the sum of prediction
loss and a fairness penalty. The fairness penalty measures deviations from demographic
parity and equalized odds. A tuning parameter controls the trade-off between accuracy
and fairness.

3.3.3. Post-Processing Calibration

After model training, calibration ensures that probabilities have consistent meanings
across groups. For each protected group, we fit a calibration function (using isotonic
regression) that adjusts raw probabilities while preserving ranking, so that, for example,
a predicted 70% default probability is interpreted consistently for all groups.

4. Experiments and Results
4.1. Experimental Setup
4.1.1. Dataset Characteristics

We evaluate our approach using three real-world SME lending datasets from
different regions.

1) Dataset A (United States):

47,832 loan applications from 2019-2023, covering the pandemic period to capture
economic disruption.

Label rate: 31.2%, default rate: 8.7%.

Rich transaction data from payment processors.

2) Dataset B (Europe):

28,456 applications from small businesses collected between 2020 and 2023.
Label rate: 42.6%, default rate: 6.3%.

Comprehensive behavioral data from online platforms.

3) Dataset C (Asia):

35,291 applications from microenterprises, including many informal sector
businesses.

Label rate: 18.9%, default rate: 11.2%.

Limited traditional data, with rich alternative sources.

The combined dataset contains 111,579 applications with varying data quality and
completeness, reflecting real-world conditions.

As shown in Table 3, the datasets demonstrate geographic diversity, temporal
coverage, and data availability patterns.
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Table 3. Experimental Dataset Characteristics.

Sample Label Default Time Protected
Dataset . Features
Size Rate Rate Span Groups
A (US) 47,832 512 31.2% 8.7% 2019 - 4
' o o 2023

o o 2020 -

B (EU) 28,456 389 42.6% 6.3% 2023 3
. o o 2018 -

C (Asia) 35,291 445 18.9% 11.2% 2023 5
Combine o o 2018 -

d 111,579 512 29.8% 8.9% 2023 5

4.1.2. Evaluation Methodology

We use temporal splits to simulate realistic deployment, training on historical data
and testing on future applications. This avoids data leakage and provides honest

performance estimates.
Evaluation metrics include:
Prediction metrics:

1) AUC: overall discrimination ability
2)  Precision/Recall: performance at specific thresholds
3)  Brier Score: quality of probability calibration

4)  Matthews Correlation: balanced accuracy for imbalanced data

Fairness metrics:

1)  Statistical parity difference: approval rate gaps
2) Disparate impact ratio: relative approval rates
3) Equalized odds difference: error rate disparities
4)  Calibration difference: probability consistency

Results are averaged over five random splits with confidence intervals.

4.2. Performance Results

4.2.1. Comparison with Baseline Methods

As shown in Table 4, we compare our approach against standard classification
methods. The semi-supervised framework achieves the best overall performance while

maintaining reasonable computational co

st.

Table 4. Performance Comparison Across Methods.

Method AUC Precisio Recal F1- Tra'mlng
n 1 Score Time
- . 0.712 = )
Logistic Regression 0.021 0.673 0.621 0.646 2.3 min
0.798 + .
Random Forest 0.751 0.702  0.726 18.7 min
0.018
. . 0.823 + )
Gradient Boosting 0.015 0.782 0.738 0.759 34.2 min
Superv1sed. Feature 0.836 = 0.798 0.751 0.774 41.5 min
Selection 0.014
Our Semi-supervised 0871+ og34 0792 0812  283min
Approach 0.012
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0.862 +
0.013

Our Approach with

.821
Fairness 08

0.806 0.813 31.6 min

422

Key observations:

1) Semi-supervised learning improves AUC by 4.5% over the best supervised
baseline

2)  Fairness constraints reduce AUC by only 0.9%, a negligible cost

3) Training time remains reasonable despite added complexity

. Label Efficiency Analysis

The advantage of semi-supervised learning becomes evident when labeled data is

scarce. As shown in Figure 3, performance plateaus at around 20% labeled data, achieving
similar results to fully labeled supervised learning.

0.9
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Figure 3. Learning Curves and Label Efficiency Analysis.

Four-panel visualization:

(a) AUC progression versus labeled sample percentage

(b) Precision-recall curves at varying label rates

(c) Computational time scaling, confirming O (n log n) behavior

(d) Fairness-accuracy trade-off curves identifying Pareto-optimal configurations

As shown in Table 5, semi-supervised learning substantially reduces labeling

requirements while maintaining predictive performance.

Table 5. Model Performance Comparison Table.

Label % Supervised AUC Semi-supervised AUC Improvement
10% 0.683 0.798 +16.8%
20% 0.741 0.847 +14.3%
30% 0.778 0.859 +10.4%
50% 0.812 0.865 +6.5%
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70% 0.829 0.869 +4.8%

100% 0.836 0.871 +4.2%

At 20% labels, semi-supervised learning achieves performance comparable to
supervised learning with 70% labels, a 3.5x reduction in labeling requirements.

4.2.3. Computational Efficiency

Scalability is critical for production. As shown in Table 6, the approach processes
500,000 applications in approximately two hours. Graph construction uses approximate
nearest-neighbor indexing, achieving near O (n log n) scaling.

Table 6. Dataset Processing Timeline.

Dataset Graph Label Feature Total
Size Construction Propagation Selection Time
10K 0.8 min 1.2 min 0.5 min 2.5 min
50K 4.1 min 6.3 min 2.4 min 12.8 min
100K 8.3 min 12.7 min 4.8 min 25.8 min
500K 42.5 min 64.2 min 24.1 min 130.8 min

4.3. Fairness Evaluation
4.3.1. Demographic Disparity Reduction

Traditional models exhibit large approval rate gaps across protected groups. Our
approach substantially reduces these disparities, as shown in Table 7. Default rates remain
stable, demonstrating that the model identifies genuinely creditworthy applicants.

Table 7. Approval Rate Improvement Comparison Table.

Group Traditional Approval Rate Our Approval Rate Improvement
Male 0.412 0.398 -3.4%
Female 0.284 0.371 +30.6%
Gap 0.128 0.027 -78.9% reduction

Similar improvements occur for other attributes: minority approval increases by
24.5%, rural businesses by 19.8%, and young entrepreneurs by 29.7%. Fairness metrics are
computed at the F1-maximizing operating point with binarized calibrated thresholds.

4.3.2. Error Rate Parity

Error rates across groups are similar:

1)  True Positive Rate: baseline 0.68-0.84 (16% gap), our approach 0.79-0.83 (4% gap)
2)  False Positive Rate: baseline 0.12-0.23 (11% gap), our approach 0.14-0.17 (3% gap)
This ensures no group bears disproportionate misclassification burden.

4.4. Feature Analysis
4.4.1. Important Alternative Features

Key predictive alternative features include:
Transaction Features: payment velocity, weekend/weekday sales ratio, customer

return rate, refund frequency
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Behavioral Features: response time to inquiries, platform login frequency, terms page
viewing duration, cart abandonment rate

Supply Chain Features: vendor diversity index, payment term variance, order
consistency, supplier relationship duration

These features capture business health dimensions invisible to traditional metrics.

4.4.2. Proxy Variable Transformation

Discriminatory proxy variables are transformed while preserving legitimate business
signals, as shown in Table 8.

Table 8. Variable Proxy and Conversion Information Table.

Original Information

Variable

Proxy For Transformation
y Preserved

Regional economic

Zip code Race L Business environment
indicators
. . . Brandin
Business name Gender Length, complexity metrics naing
sophistication
Immigratio . - .
Industry code & Operational characteristics Business model

n

5. Discussion and Implications

5.1. Key Findings

Our experimental results highlight several important insights regarding the use of
alternative data for SME credit assessment:

1)

2)

3)

Label efficiency is a major advantage. With only 20% labeled data, the semi-
supervised approach achieves performance comparable to supervised methods
using 70% labeled data. This 3.5x reduction in labeling requirements directly
translates to faster model deployment and lower costs. For a lender processing
10,000 applications per month, only 2,000 labeled examples are needed instead
of 7,000, saving months of waiting for outcomes.

Alternative features capture complementary risk dimensions. Transaction
velocity proves more predictive than transaction volume; businesses processing
many small transactions rapidly exhibit different risk characteristics than those
with fewer, larger transactions. Behavioral patterns, such as response times to
customer inquiries, correlate strongly with repayment probability. These signals
enhance traditional metrics rather than replace them.

Fairness and accuracy can align. Reducing bias does not require substantial loss
in predictive power. Our approach loses only 0.9% AUC while reducing
demographic gaps by 78%, suggesting that current models often reject
creditworthy applicants due to incomplete information rather than genuine risk,
representing a significant missed opportunity for lenders.

5.2. Practical Implementation Considerations

Implementing alternative data in credit assessment requires addressing several
practical challenges:

D)

2)

Data quality varies. Not all alternative data sources provide equal value.
Transaction data from established processors is highly reliable, whereas social
media signals are noisier and require filtering. Institutions should begin with
high-quality sources and expand gradually.

Regulatory compliance necessitates documentation. Every lending decision
must be explainable. Our framework provides feature importance scores and
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individual prediction explanations using SHAP values, but institutions must
develop processes to document and communicate these explanations to
regulators and applicants.

3) Integration with legacy systems requires planning. Many banks operate
traditional credit scoring systems that are not designed for high-dimensional
alternative data. Our framework can run alongside existing systems to provide
complementary risk assessment. Gradual migration strategies are preferable to
wholesale replacement.

4)  Model monitoring becomes more complex. Patterns in alternative data change
more rapidly than traditional metrics. For example, restaurant transaction
patterns during pandemic lockdowns differed substantially from normal
operations. Models need frequent retraining and monitoring across multiple
data streams.

5.3. Limitations and Future Directions

Current limitations include:

1)  Cash-based businesses remain invisible. Businesses without digital transactions
cannot be assessed effectively, affecting a significant portion of microenterprises
in developing countries. While mobile money adoption offers potential,
penetration remains limited in many regions. We propose an online learning
roadmap combining data drift detection, incremental label propagation, and
periodic calibration for near-real-time updates.

2) Cross-border applicability is limited. Models trained in one region do not
transfer directly to others due to differing payment patterns, business practices,
and economic cycles. Transfer learning techniques are needed to adapt global
patterns to local conditions.

3) Temporal dynamics require improved modeling. Current models assume static
feature importance, but business lifecycle stages demand different risk
indicators. Startups require evaluation based on founder characteristics and
business plans, whereas mature businesses depend on operational metrics.
Dynamic models adapting to business evolution could improve accuracy.

4)  Privacy regulations create constraints. Laws such as GDPR and CCPA restrict
data usage differently across jurisdictions. Techniques like federated learning
and differential privacy may allow model training without centralizing
sensitive data, but practical implementation remains challenging.

Future research directions include:

1) Incorporating unstructured data (images, voice, video) for richer business
assessment

2)  Developing online learning approaches for continuous model improvement

3) Creating explainable Al methods specifically for alternative data

4)  Building cross-cultural models that respect local business practices

6. Conclusion

This paper demonstrates that semi-supervised feature selection with integrated bias
mitigation effectively leverages alternative data for SME credit assessment. Our approach
addresses three critical challenges in modern credit scoring: label scarcity, high-
dimensional heterogeneous data, and algorithmic bias.

Experimental results are encouraging. Depending on the proportion of labeled data
available, our semi-supervised framework achieves between 4.2 percentage points
(approximately 5% relative) and 16.8% relative improvement in AUC compared to
supervised baselines, while simultaneously reducing demographic disparities. The
framework scales efficiently, processing 500,000 applications in approximately two hours,
and works effectively with only 20% labeled data, making deployment feasible even for
new lending programes.
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The implications extend beyond technical metrics. By enabling assessment of
previously "unscorable" businesses, the approach can expand credit access for millions of
SMEs globally, including small businesses in developing economies, minority-owned
enterprises, and informal sector operators. Beyond algorithmic performance, the method
supports broader goals of economic inclusion and growth.

Financial institutions can adopt this framework for practical alternative data
integration in credit decisions. The system is compatible with existing infrastructures,
provides explainable outputs, and maintains regulatory compliance. Early adopters can
gain competitive advantages by serving previously overlooked market segments
profitably.

Looking ahead, as digital transactions become more widespread and new data
sources emerge, alternative data is likely to become standard in credit assessment. The
framework developed in this study provides a strong foundation for this transition,
offering opportunities for innovative and inclusive credit evaluation.
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