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Abstract: Atmospheric disturbances impose systematic degradation on multi-sensor perception
systems in autonomous vehicles, necessitating a fundamental rethinking of sensor fusion strategies.
This study presents a comprehensive reliability assessment framework combined with an adaptive
fusion algorithm designed to mitigate sensor-specific performance deterioration under adverse
meteorological conditions. Using an empirical dataset encompassing 10,000 hours of vehicle
operation, we establish quantitative correlations between atmospheric parameters and
measurement uncertainty across heterogeneous sensor modalities. Real-time trustworthiness
estimation is achieved through a dynamic scoring mechanism that integrates environmental context
with temporal performance evolution. The proposed adaptive fusion algorithm performs reliability-
weighted integration through probabilistic decision modeling, optimizing sensor data combination
while minimizing perception errors. Experimental validation demonstrates that the method
improves object detection accuracy by 22.9 percentage points compared with majority-vote fusion
(AP@0.5) and by 18.4 percentage points compared with fixed-weight fusion in heavy rain (AP@0.5).
Furthermore, the false positive rate is reduced by 66-73% relative to the fixed-weight and majority-
vote baselines, respectively. These improvements directly enhance collision avoidance performance,
substantially advancing the safety and robustness of autonomous vehicles operating in challenging
environmental conditions.
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1. Introduction
1.1. Background and Motivation for Multi-Sensor Fusion in Autonomous Driving

Autonomous vehicle perception systems integrate heterogeneous sensor modalities,
each providing complementary information to environmental understanding pipelines
[1]. Camera sensors operating at 30-60 Hz excel in texture discrimination and semantic
classification through high-resolution imaging; however, depth estimation remains
limited to stereoscopic configurations, with accuracy dependent on baseline separation.
LiDAR systems generate three-dimensional point clouds at 10-20 Hz, achieving
millimeter-level spatial precision for geometric reconstruction, though their performance
is susceptible to atmospheric scattering during precipitation. Radar sensors maintain
detection capabilities in dense precipitation while providing instantaneous velocity
measurements via Doppler processing at 20 Hz, albeit with angular resolution constraints
of 1-3 degrees.
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Mathematical modeling of sensor fusion extends beyond simple aggregation,
employing probabilistic state estimation where measurement uncertainties propagate
through covariance matrices. Each sensor provides observations z_i with uncertainty
characterized by Sigma_i, requiring weighted combination strategies to minimize
posterior uncertainty. Contemporary architectures employ Kalman filtering for linear
systems with Gaussian noise, particle filters for non-linear measurement models using
Monte Carlo sampling, and factor graph optimization for batch processing over temporal
windows [2].

ISO 26262 defines hardware ASIL targets for functional safety, while ISO/PAS 21448
(SOTIF) does not mandate a specific failure rate. In this work, we target a failure
probability of less than or equal to 10"-8 to 107-9 per operational hour for safety-critical
functions as an engineering goal rather than a normative requirement. These constraints
influence fusion algorithm design, necessitating approaches that maintain operational
integrity under sensor degradation or failure. Robust fusion algorithms are thus essential
prerequisites for Level 4 and Level 5 autonomous vehicle capabilities.

1.2. Challenges of Sensor Performance Degradation under Adverse Weather Conditions

Atmospheric phenomena produce interference patterns that degrade sensor
performance through absorption, scattering, and refraction [3]. Camera sensors
experience contrast reduction following the Koschmieder visibility model, where the
apparent luminance equals the object luminance multiplied by the exponential of negative
extinction coefficient times propagation distance, plus the atmospheric luminance
multiplied by one minus the same exponential term. Water droplet accumulation
introduces geometric distortions, which can be analyzed via point spread functions;
modulation transfer function values decline by 40-60% during rainfall exceeding 2
millimeters per hour.

LiDAR degradation follows Mie scattering, where the scattering cross-section
depends on particle radius and wavelength through the size parameter defined as two
times pi times radius divided by wavelength [4]. Precipitation generates forward and
backscatter, producing spurious points and range bias; refraction and multipath effects
can distort apparent range, mitigated via outlier rejection and attenuation modeling. The
attenuation coefficient can be empirically estimated, for example, k_rain equals 0.43 times
rainfall rate to the power of 0.61 at 905 nanometers, where rainfall rate is expressed in
millimeters per hour.

Electromagnetic propagation through precipitation is subject to frequency-
dependent attenuation, where gamma equals k times rainfall rate to the power of alpha,
expressed in decibels per kilometer, with empirically calibrated coefficients. Multipath
effects during precipitation generate ghost targets through ground reflection, causing
bearing uncertainties up to approximately 5 degrees and range ambiguities exceeding 10
meters under severe conditions. Thermal expansion further affects calibration, where the
angular error equals the thermal coefficient multiplied by the temperature difference,
multiplied by structural span divided by mounting separation, inducing systematic drift.

1.3. Research Objectives and Contributions

This study introduces three key innovations to mitigate weather-induced perception
degradation. First, weather-aware sensor performance modeling constructs empirical
degradation functions via regression analysis of 10,000 hours of annotated sensor data.
Piecewise linear approximations balance computational efficiency with modeling fidelity,
maintaining correlation coefficients above 0.85 across weather categories while enabling
real-time execution.

Second, dynamic reliability scoring applies Bayesian inference to quantify real-time
trustworthiness, computing posterior distributions of reliability given measurements and
weather conditions, where reliability represents the sensor state, measurements are z, and
environmental conditions are w. Operating at 20 Hz, the algorithm integrates
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environmental context using 30-60 second temporal smoothing for stability against
transients, while 5-15 second response windows capture genuine transitions.

Third, adaptive fusion formulates weight allocation as a constrained optimization
problem: minimize the sum over i of weight_i times the sensor uncertainty squared,
subject to the sum of weights equal to one, and each weight greater than or equal to a
minimum threshold. Here, sensor uncertainty quantifies the individual sensor's reliability,
while the minimum weight prevents complete exclusion. The framework demonstrates
agility, adapting within 2-second windows while maintaining O (n squared)
computational complexity for an n-sensor configuration.

2. Related Work and Technical Challenges
2.1. Current Multi-Sensor Fusion Approaches in Autonomous Vehicles

Contemporary fusion architectures implement hierarchical processing by combining
measurements at multiple abstraction levels [5]. Early fusion concatenates raw sensor data
into joint feature spaces and applies convolutional networks with three-dimensional
kernels for simultaneous processing of images and LiDAR voxels. These architectures
achieve approximately 8.3% higher detection accuracy compared with single-modality
baselines but require around 4.2 times more computational resources for operation at 10
Hz.

Late fusion processes sensor streams through independent pipelines before
combining outputs using non-maximum suppression and probabilistic association [6].
Modular architectures enable parallel GPU processing, achieving 30 Hz operation with
250 milliseconds latency. Detection-level fusion typically employs the Hungarian
algorithm for bipartite matching, optimizing assignments based on spatial proximity and
appearance similarity.

Transformer-based networks leverage attention mechanisms to learn sensor
importance through self-supervised training on extensive driving datasets. Attention
modules compute cross-modal correlations by performing dot-product operations
between encoded features, producing importance maps that highlight complementary
regions. These approaches demonstrate approximately 15.8% improvement in detection
recall compared with manually designed weighting strategies, albeit with a
computational cost of around 500 GFLOPS.

Probabilistic graphical models represent measurements as factor graphs, connecting
state variables through measurement factors and motion constraints. Optimization
minimizes the negative logarithm of the posterior probability of the state given the
measurements, typically converging within ten iterations for urban scenarios. Factor
graphs can naturally handle asynchronous measurements and missing data through
marginalization.

2.2. Weather-Induced Sensor Performance Limitations and Failure Modes

Empirical studies reveal sensor-specific vulnerability profiles under adverse weather
[7]. Camera detection range exhibits exponential deterioration, calculated as the clear-
weather range multiplied by the exponential of negative attenuation coefficient times
precipitation rate. For example, with an attenuation coefficient of 0.15, classification
accuracy can drop from a baseline of 92% to 61% during heavy precipitation exceeding 5
millimeters per hour.

LiDAR point cloud degradation can be modeled as the clear-weather number of
returns multiplied by one minus the per-meter scattering probability raised to the
propagation distance. Empirical campaigns show a 73 percentage-point reduction at 50
meters during 10 millimeters per hour rainfall, with false positive rates increasing from
2.1% to 18.7% due to precipitation backscatter. Missing points concentrate in forward-
facing sectors, creating directional blind spots [8].

Radar resolution deteriorates from the nominal 2.5 degrees to 4.1 degrees beam width
in dense fog due to refraction and multipath effects. Thermal cycling induces
approximately 0.3 degrees angular error per 10-degree Celsius temperature change. Sub-
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zero conditions amplify vibration magnitudes by 35%, introducing high-frequency noise
exceeding 50 Hz, which can corrupt inertial measurements. Thermomechanical coupling
generates differential stress patterns that manifest as systematic biases.

2.3. Existing Reliability Assessment Methods and Their Limitations

Statistical frameworks use chi-squared testing to validate measurement consistency
against nominal distributions [9]. The test statistic is calculated as the sum over all
observations of the squared difference between measurement and mean, divided by the
variance. This statistic follows a chi-squared distribution, enabling hypothesis evaluation
with 95% confidence. Adaptive outlier rejection adjusts sensitivity from three standard
deviation limits under favorable conditions to five standard deviation limits during
disturbances.

Machine learning methods employ random forest models with 100 decision trees,
achieving approximately 94.2% classification accuracy on annotated failure datasets [10].
Feature engineering extracts 47 statistical descriptors, including temporal autocorrelation,
spectral entropy, and cross-sensor correlation over one-second windows.

Information-theoretic approaches estimate reliability using mutual information
normalized by measurement entropy, where sensors with high mutual information are
assigned increased weights, while random behavior results in reliability approaching zero
[11]. Computation requires approximately 50 milliseconds for urban scenes containing
100 objects.

Existing frameworks generally lack explicit weather modeling, treating sensor
degradation uniformly regardless of the underlying cause. This limitation prevents
targeted mitigation and often results in conservative rejection, unnecessarily reducing
system capability. Incorporating weather-aware reliability assessment allows retention of
partially degraded sensors by appropriately modeling their uncertainty.

3. Multi-Sensor Reliability Assessment Framework
3.1. Weather-Aware Sensor Performance Modeling and Degradation Analysis

Sensor performance modeling establishes degradation functions through regression
analysis of annotated measurements across atmospheric conditions. Empirical coefficients
a_sensor(w) relate the weather state w to sensor performance, where a is in the range [0,1]
representing capability retention. Piecewise linear interpolation between discrete
categories enables continuous estimation while maintaining computational efficiency.

Camera degradation incorporates visibility V_met to compute extinction using o_ext
= 3.912 / V_met following Koschmieder's law. Contrast reduction is quantified as C_r =
exp (-o_ext * d) at distance d, establishing the detection probability P_detect = P_clear *
C_r * a_precipitation, where o_precipitation accounts for lens contamination. Validation
across 5,000 images demonstrates a correlation coefficient r = 0.87 between predicted and
observed detection rates.

LiDAR models implement modified Mie theory for polydisperse distributions.
Backscatter is computed as f(r) = £ (n_i * o_i), aggregating contributions from particles
with density n_i and cross-section o_i. Range-dependent attenuation follows A(r) = exp (-
2 [ B (r') dr'), creating non-linear patterns varying with atmospheric stratification.
Validation against 3,000 events confirms accuracy within 15% for rainfall rates below 20
mm/hr.

Radar modeling follows ITU-R recommendations for 77 GHz attenuation. Two-way
attenuation is calculated as L = 2 [ y(r) dr, where y = 0.38 * R * 0.72 for horizontal
polarization. Doppler broadening quantifies velocity degradation as o_v =0.13 * R~ 0.5
[12].

As shown in Table 1, sensor performance degradation coefficients are provided for
different weather conditions.
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Table 1. Sensor Performance Degradation Coefficients Under Different Weather Conditions.

Weather Visibility Camera LiDAR Radar Temperatur
Condition (m) Coefficient Coefficient Coefficient e Factor
Clear >10000 0.95 0.92 0.88 1.00
Light Rain
O.5g—2mm/h 5000 - 8000 0.78 0.75 0.85 0.98
Moderate
Rain (2 - 2000 - 5000 0.52 0.45 0.78 0.96
5mm/h)
Heavy Rain 555000 0.31 0.23 0.71 0.94
(>5mm/h)
Light Fog 1000 - 3000 0.65 0.82 0.83 0.97
Dense Fog 50 - 200 0.15 0.68 0.76 0.95
Light Snow 800 - 2000 0.58 0.38 0.74 0.89
Heavy 100 - 500 0.22 0.12 0.62 0.85
Snow
Freezing 340 _ 800 0.28 0.18 0.68 0.82
Rain
Mixed
Precipitatio 200 - 600 0.35 0.25 0.65 0.88
n
Night* 000 - 3000 0.42 0.71 0.82 0.96
Light Rain
Night + Fog 50 - 500 0.18 0.64 0.73 0.94

Temperature compensation is modeled as T_factor=1-0.02* IT - 201, where 20°C is
the reference temperature. The composite coefficient a_total = a_weather * T_factor *
a_mechanical combines atmospheric, thermal, and mechanical factors. Cross-validation
demonstrates a mean absolute error of 0.08 for coefficient prediction.

3.2. Real-Time Reliability Estimation Algorithm for Camera, LIDAR and Radar

Environmental assessment employs computer vision for atmospheric
characterization. Precipitation detection isolates rain streaks through temporal
differencing, while fog quantification analyzes Fourier spectra to characterize scattering
intensity. These methods enable robust classification across meteorological conditions.

Measurement validation uses the Mahalanobis distance:

d M= (@-WAT*ZA (D) (z- )

for outlier identification, where p and Y encode Kalman filter predictions.
Observations violating d_M > x?_a(n) trigger reliability penalties, with X% _a(n)
representing critical values at significance a for n dimensions. Adaptive thresholds
transition from ot =0.01 under benign conditions to at = 0.05-0.10 under adverse conditions,
balancing sensitivity against false alarms.

Temporal consistency is evaluated through sliding windows computing the
coefficient of variation:

CV=o/pn

Stable sensors maintain CV < 0.15, while degraded sensors manifest CV > 0.35.
Intermediate values trigger proportional adjustments. Spectral analysis identifies periodic
disturbances via FFT to detect mechanical resonances [13].

As shown in Figure 1, the real-time sensor reliability estimation architecture
integrates these modules.
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» Meteorological Data
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+ 5 Severity Levels
* Visual Detection

Measurement Quality
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+ EWMA Filtering + Adaptive Weights

Figure 1. Real-Time Sensor Reliability Estimation Architecture.

Cross-sensor correlation is quantified as:
o_ij=cov (z_i, z_j) / (o_i * 0_j)
Strong correlation (o > 0.7) confirms sensor veracity, while deficiency signals
malfunction or occlusion. Matrix computation at 5 Hz enables fault detection within 200

ms.

Historical tracking uses exponentially weighted averaging:
R_avg=0.1*R_current + 0.9 * R_previous
Linear regression over 60-second windows identifies degradation trends, triggering
alerts when rates exceed 0.01 per minute. Performance history is maintained for 24 hours
at 1 Hz granularity.
As shown in Table 2, reliability scoring parameters and thresholds are defined for

each sensor.

Table 2. Real-Time Reliability Scoring Parameters and Thresholds.

Asse-s sn}ent Parameter Camera LiDAR Radar Weight
Criteria Factor
Environme Prec1p%tat10 0.65 0.58 0.32 0.40
ntal Impact  n Weight
Envi
TV Rog Weight 0.72 045 0.28 0.35

ntal Impact
Environme Temperatur —, ) 0.30 0.15 0.15
ntal Impact e Weight
Environme - Wind 0.18 0.22 0.12 0.10
ntal Impact Weight
Measureme Spatial

nt Accuracy 0.8 0.3 0.5 0.30
Consistency (xm)
Measureme  Temporal

nt Stability 0.15 0.12 0.18 0.25
Consistency (CV)
Measureme Inter -

nt sensor 0.75 0.80 0.70 0.20
Consistency  Agreement
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Measureme

nt Detection 150 200 300 0.25
. Range (m)
Consistency
Historical Short - term
Performanc Weight 0.60 0.55 0.65 0.60
e (180s)
Historical Long - term
Performanc Weight 0.40 0.45 0.35 0.40
e (3600s)
Historical
Degradatio
Perfozmanc n Threshold 0.20 0.25 0.15 -
Historical Recover
Performanc . Y 45 60 30 -
o Time (s)
Quality Minimum
Thresholds Reliability 0.15 0.20 0.25 )
Quality Warning
Thresholds Level 0.35 0.40 045 )
Quality Optimal
. . 7 -
Thresholds Level 0-85 0.80 0.75

Computational optimization achieves 8 ms latency via SIMD vectorization and GPU-
accelerated inference. Memory bandwidth is optimized through caching and prefetching.
The modular architecture allows selective computation based on sensor availability.

3.3. Dynamic Reliability Scoring Mechanism Based on Environmental Conditions

Hierarchical Bayesian inference is formulated as:

PR 1z w,h)

where R represents reliability, z the observations, w the atmospheric state, and h the
historical context. The prior P (R | w, h) integrates weather degradation with long-term
trends, while the likelihood P (z | R) evaluates consistency. Posterior approximation uses
variational inference, converging in 5 iterations via coordinate descent.

Short-term reliability is aggregated as:

R_short=2X (w_i * r_i)

with r_i in [0,1] and normalized weights w_i summing to 1. Weight determination
minimizes entropy:

Z (w_i*log(w_i))

subject to performance constraints, promoting balanced utilization. Interior point
methods achieve convergence within 2 ms for 3-sensor configurations.

Long-term evolution is modeled as a state-space system:

Rt=fR t-1,ut)+et e t~N(0 Q)

z_t=h(R_t)+n_t, n_t~N (0, R)

Extended Kalman filtering provides recursive estimation with O(n?) complexity.

As shown in Figure 2, the evolution of dynamic reliability scores during weather
transitions is illustrated.
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Precip. (0—8mm/h)

Figure 2. Dynamic Reliability Score Evolution During Weather Transition Events.

Spatial mapping divides the field-of-view into angular O_i and range r_j cells,
computing R (0_i, r_j) for each. Weather effects are non-uniform, with forward sectors
experiencing up to 40% greater degradation during frontal precipitation. This enables
selective utilization, extracting maximum information while suppressing unreliable

regions.
The geometric mean:
(ITR_i) ~ (1/m)

achieves optimal balance, maintaining sensitivity to degradation while preventing
catastrophic collapse, outperforming arithmetic averaging and minimum operators.
As shown in Table 3, reliability score integration weights are defined for different

operational scenarios.

Table 3. Reliability Score Integration Weights for Different Operational Scenarios.

Operationa Speed Camera LiDAR Radar Safety
1 Scenario (km/h) Weight Weight Weight Factor
Urban 20 -50 045 0.35 0.20 12

Dr1V1ng
Suburban 40- 70 0.38 0.32 0.30 11
Driving
Highway 80 - 120 025 0.25 0.50 1.0
Dr1V1ng
Constructio 10 - 30 025 0.55 0.20 15
n Zone
Parking 0-10 033 0.33 0.34 18
Operations
School Zone 15-25 0.50 0.30 0.20 1.6
Night 20 - 50 0.30 0.45 0.25 13
Urban
Night 80 - 120 0.20 0.30 0.50 12
Highway
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Rain

Modifier - 0.6 0.7 1.2 -
Fog

Modifier - 0.4 0.8 1.1 -
Snow

Modifier - 0.5 0.6 1.3 -
Clear

Weather - 1.0 1.0 1.0 -

Modifier

Operational context modulates thresholds through risk-aware boundaries. Dense
urban environments with pedestrian concentrations exceeding 10 per km? mandate 1.5x
safety amplification. Highway scenarios prioritize long-range detection, redistributing
weights toward distant bins.

4. Adaptive Fusion Algorithm Design and Implementation
4.1. Weight Allocation Strategy Based on Sensor Reliability Scores

Weight allocation is formulated as a quadratic optimization problem, determining w
=[w_camera, w_LiDAR, w_radar] to minimize

Jw)=wAT*Z*w

where X encodes reliability-scaled covariance. Constraints enforce Zw_i =1 and w_i
> R_i * w_min to ensure proportional contribution.

Sequential quadratic programming uses gradient V] =2 * £ * w and Hessian H=2 *
L, achieving convergence within 3-5 iterations. Warm-starting reduces computation to 2
iterations for frame transitions. Cholesky decomposition exploits matrix structure,
requiring 0.8 ms on embedded processors. Active set methods maintain feasibility
throughout iterations.

Uncertainty propagation employs the unscented transform for nonlinear models.
Sigma points are defined as X_i = p + ¥ ((n + x) * Z), where n is the dimension and k =3 -
n provides accuracy. The transformed covariance is computed as P_y =2 (W_i* (Y_i- p_y)
*(Y_i- p_y) " T), aggregating contributions and generating uncertainty ellipsoids.

Cross-validation across 1,000 scenarios confirms an 18.3% RMSE reduction under
adverse weather. Metrics include position RMSE, classification accuracy, and track
consistency, with validation emphasizing edge cases where sensor degradation deviates
from typical patterns [14].

As shown in Figure 3, the adaptive weight allocation response to environmental
changes is illustrated.

Clear Light Rain Heavy Rain Fog Snow Mixed

Sensor Weight

0 200 400 600 800 1000 1200
Time (seconds)
Adaptation Analysis Sensor Weight Allocation
« Clear: Balanced allocation B camera (0.45—0.08)

* Rain: Radar dominance increases I LiDAR (0.35—0.20)

- Snow: Maximum radar reliance
« Dynamic weight adjustment B Radar (0.25-0.72)

Figure 3. Adaptive Weight Allocation Response to Environmental Changes.
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Temporal adaptation follows

w_t=0.3* w_optimal + 0.7 * w_t-1

balancing responsiveness against stability. Abrupt transitions trigger verification
against safety constraints, while monitoring prevents pathological dependencies by
enforcing w_i < 0.75 upper bounds.

As shown in Table 4, sensor weight allocation matrices are provided for weather-
specific scenarios.

Table 4. Sensor Weight Allocation Matrix for Weather-Specific Scenarios.

Weather Preic;flltat Visibility = Camera LiDAR Radar Confiden
Scenario (mm/h) (m) Weight Weight Weight ce Level
Clear Day 0 >10000 0.40 0.35 0.25 0.95
Clear 0 >5000 0.28 0.42 0.30 0.88
Night
Light 3000 -
RainDay 0020 2000 0.30 0.28 0.42 0.82
Light
Rain 05-20  00° 0.22 0.25 0.53 0.76
) 4000
Night
Heavy >50  500-2000  0.15 0.20 0.65 0.71
Rain Day
Heavy
Rain >50  200-1000  0.08 0.20 0.72 0.65
Night
. 1000 -
Light Fog 0 3000 0.25 0.35 0.40 0.80
Dense 0 50-200 0.0 0.32 0.58 0.68
Fog
Light 1030 800-2000 020 0.25 0.55 0.73
Snow
Heavy >5.0 100 - 500 0.12 0.18 0.70 0.62
Snow
Freezing  o5.20  300-800 0.8 0.22 0.60 0.58
Rain
Mixed
Precipitat  2.0-5.0 200 - 600 0.16 0.24 0.60 0.64
ion

Implementation employs lookup tables for common scenarios, SIMD vectorization
for matrix operations, and pipeline parallelization across channels. Memory footprint
remains below 10 MB including precomputed tables.

4.2. Environmental Context-Aware Fusion Decision Making

Context-aware decision making integrates meteorological measurements, traffic
estimation, and map priors into strategy selection. Hierarchical state machines with
S_weather € {clear, light, moderate, severe} and S_operation € {parking, urban, highway,
emergency} trigger parameter updates, adapting thresholds, gates, and tracking
parameters.

Weather  classification = processes  precipitation rate,  visibility, and
temperature/humidity through fuzzy membership functions p_i (x), enabling gradual
transitions. Defuzzification via the centroid provides a continuous severity score s € [0,1],
allowing smooth interpolation.
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Traffic density is analyzed using radar and camera detections, computing vehicles
per area and categorizing as sparse (<10/km?), moderate (10-50/km?), or dense (>50/km?).
Higher densities bias the system toward conservative strategies, increasing confidence
thresholds from 0.6 to 0.85, with initialization requiring 3-5 detections.

Map priors incorporate HD annotations for topology, lanes, and patterns. Prior
probabilities P(object|location) weight detections according to distribution. Intersections
increase pedestrian priors 3x, while highways suppress pedestrian hypotheses. Detection
integration follows:

P (object|detection, location) o P(detection | object) * P(object | location)

Predictive adaptation anticipates changes using weather radar forecasts for 15
minutes, enabling preemptive adjustments. Route analysis identifies challenging
segments, triggering specialized configurations. This framework reduces adaptation
latency from 2 s to 0.5 s.

Safety envelope verification ensures risk-aware decisions, using formal verification:

¢ = G (distance_min > d_safe)

Reachability analysis at 1 Hz validates configurations against worst-case degradation.
Failed verification triggers a conservative fallback prioritizing collision avoidance [15].

4.3. Robust Data Association and Conflict Resolution Mechanisms

Data association establishes correspondences through:

L(A)=ITP(z_ilx_j) * P(A)

where A represents the assignment. The Hungarian algorithm solves max_A L(A)
with O(n®) complexity, while multiple hypothesis tracking maintains K-best solutions for
ambiguous cases.

Spatial gates use:

d2M=(z-Hx)"T*S"(-1)*(z-Hx) <y

where S=H * P * H*T + R, and y denotes thresholds adapting from vy = 9.21 (99%
confidence for 2D) in clear conditions to y = 16.27 (99.9%) in adverse weather.

Temporal association enforces consistency:

LLR_t=LLR_t-1 +log (P_D * P(zIx) / P_FA)

where P_D denotes detection probability and P_FA is the false alarm rate. Tracks
exceeding T_confirm € [3,8] are confirmed, while scores below T_delete € [-5, -2] are
terminated.

Conflict resolution aggregates estimates through:

x_consensus = X (w_i * x_i) / Xw_i

weighted by reliability and precision. RANSAC with iterations N = log (1-0.99) /
log(1-w”m) maintains robustness against failures and interference.

False positive suppression verifies geometric consistency, including object
dimensions, ground alignment, and occlusions. Temporal filters require N_min € [2,5]
detections within windows. Semantic validation rejects implausible detections based on
scene context.

Measurement fusion employs covariance intersection:

PA(-1) = *P_1" (-1) + (1-w) * P_2" (-1)

x=P*(w*P_1" (-1) * x_1 + (1-w) * P_2" (-1) * x_2)

where w minimizes trace(P), providing conservative estimates without knowledge of
correlations.

5. Experimental Evaluation and Performance Analysis
5.1. Simulation Setup and Real-World Dataset Description

Validation encompasses both simulation and real-world datasets totaling 10,000
operational hours. Physics-based simulations achieve correlation coefficients of 0.92 for
camera, 0.89 for LIDAR, and 0.94 for radar. Weather simulation utilizes particle systems
for precipitation, volumetric ray marching for fog, and physically-based lighting for
diurnal variations.
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Field data collection deployed five vehicles across diverse regions: Pacific Northwest
(3,500 hours, predominantly in precipitation), Upper Midwest (2,800 hours, snow-prone
conditions), and California Central Valley (3,700 hours, fog-prone regions). The
aggregated weather distribution across all areas includes 5,600 hours of precipitation
(56%), 3,700 hours of snow (37%), and 700 hours of fog/mixed (7%). Sensor configurations
consist of six cameras (1920x1080 at 30 Hz), two LiDAR units (128 channels at 10 Hz), and
five radars (77 GHz at 20 Hz). Ground truth is provided via differential GPS with RTK,
achieving 2 cm accuracy and synchronized within 1 ms through PTP.

The weather distribution further details clear skies (4,200 hours, 42%), light
precipitation (2,300 hours, 23%), moderate precipitation (1,800 hours, 18%), heavy
precipitation (1,000 hours, 10%), and fog/mixed conditions (700 hours, 7%). Precipitation
rates range from 0.1 to 50 mm/hr, with visibility spanning 10 m to unlimited.
Temperatures vary from -25°C to 45°C.

Dataset annotation includes 8.7 million vehicles, 2.3 million pedestrians, and 1.1
million cyclists, each with 3D bounding boxes and tracking. Weather labels are derived
from meteorological stations within 5 km, calibrated against on-vehicle sensors. Semi-
automated pipelines achieve 96.3% inter-annotator agreement for objects and 91.7% for
weather labels.

5.2. Comparative Analysis with Existing Fusion Methods under Various Weather Scenarios

Evaluation compares the adaptive fusion method against fixed-weight, majority
voting, Kalman filter, and learned fusion baselines. Metrics include detection accuracy,
false positives, tracking consistency, and computational efficiency across different
weather conditions.

Average precision at IoU 0.5 demonstrates notable improvements during adverse
weather. In clear weather, performance remains comparable (proposed: 89.3%, fixed-
weight: 88.1%, majority-vote: 86.7%, Kalman: 87.9%, learned: 88.5%). Under heavy rain,
the proposed method achieves AP@0.5 of 71.2%, compared to 52.8% for fixed-weight and
48.3% for majority-vote, corresponding to absolute improvements of +18.4 and +22.9
percentage points, respectively, enabled by weather-aware adaptation.

False positive rates during precipitation are significantly reduced. The proposed
method maintains 8.3 false positives per kilometer during heavy rain, compared to 24.7
for fixed-weight, 31.2 for majority voting, 22.1 for Kalman, and 15.8 for learned fusion.
This 73% reduction relative to majority voting translates to fewer phantom braking events.
Statistical significance is confirmed with p <0.001 for adverse weather differences.

MOTA scores demonstrate system robustness: the proposed method achieves 76.4%
during moderate rain versus 61.2% for fixed-weight, representing a 24.8% improvement.
Track fragmentation is reduced by 41% through adaptive selection, preserving continuity
during sensor failures. Identity switches decrease from 4.7/minute to 1.8/minute in
challenging scenarios.

Computational analysis indicates 18.3 ms latency on an NVIDIA Jetson AGX Xavier.
Adaptive fusion adds only 3.7 ms overhead compared to the fixed-weight baseline.
Memory utilization remains below 850 MB, while power consumption increases by 2.3 W
during adverse weather for reliability assessment tasks.
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