
 

 
Journal of Sustainability, Policy, and Practice 

EISSN: 3105-1448 | PISSN: 3105-143X | Vol. 1, No. 4 (2025) 

 

 143  

Article  

Reliability Assessment and Adaptive Fusion Algorithm for 
Multi-Sensor Data in Autonomous Driving under Adverse 
Weather Conditions 
Yi Guo 1,* 

1 Computer and Information Science, University of Pennsylvania, PA, USA 
* Correspondence: Yi Guo, Computer and Information Science, University of Pennsylvania, PA, USA 

Abstract: Atmospheric disturbances impose systematic degradation on multi-sensor perception 
systems in autonomous vehicles, necessitating a fundamental rethinking of sensor fusion strategies. 
This study presents a comprehensive reliability assessment framework combined with an adaptive 
fusion algorithm designed to mitigate sensor-specific performance deterioration under adverse 
meteorological conditions. Using an empirical dataset encompassing 10,000 hours of vehicle 
operation, we establish quantitative correlations between atmospheric parameters and 
measurement uncertainty across heterogeneous sensor modalities. Real-time trustworthiness 
estimation is achieved through a dynamic scoring mechanism that integrates environmental context 
with temporal performance evolution. The proposed adaptive fusion algorithm performs reliability-
weighted integration through probabilistic decision modeling, optimizing sensor data combination 
while minimizing perception errors. Experimental validation demonstrates that the method 
improves object detection accuracy by 22.9 percentage points compared with majority-vote fusion 
(AP@0.5) and by 18.4 percentage points compared with fixed-weight fusion in heavy rain (AP@0.5). 
Furthermore, the false positive rate is reduced by 66-73% relative to the fixed-weight and majority-
vote baselines, respectively. These improvements directly enhance collision avoidance performance, 
substantially advancing the safety and robustness of autonomous vehicles operating in challenging 
environmental conditions. 

Keywords: multi-sensor fusion; reliability assessment; adverse weather; autonomous driving 
 

1. Introduction 
1.1. Background and Motivation for Multi-Sensor Fusion in Autonomous Driving 

Autonomous vehicle perception systems integrate heterogeneous sensor modalities, 
each providing complementary information to environmental understanding pipelines 
[1]. Camera sensors operating at 30-60 Hz excel in texture discrimination and semantic 
classification through high-resolution imaging; however, depth estimation remains 
limited to stereoscopic configurations, with accuracy dependent on baseline separation. 
LiDAR systems generate three-dimensional point clouds at 10-20 Hz, achieving 
millimeter-level spatial precision for geometric reconstruction, though their performance 
is susceptible to atmospheric scattering during precipitation. Radar sensors maintain 
detection capabilities in dense precipitation while providing instantaneous velocity 
measurements via Doppler processing at 20 Hz, albeit with angular resolution constraints 
of 1-3 degrees. 
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Mathematical modeling of sensor fusion extends beyond simple aggregation, 
employing probabilistic state estimation where measurement uncertainties propagate 
through covariance matrices. Each sensor provides observations z_i with uncertainty 
characterized by Sigma_i, requiring weighted combination strategies to minimize 
posterior uncertainty. Contemporary architectures employ Kalman filtering for linear 
systems with Gaussian noise, particle filters for non-linear measurement models using 
Monte Carlo sampling, and factor graph optimization for batch processing over temporal 
windows [2]. 

ISO 26262 defines hardware ASIL targets for functional safety, while ISO/PAS 21448 
(SOTIF) does not mandate a specific failure rate. In this work, we target a failure 
probability of less than or equal to 10^-8 to 10^-9 per operational hour for safety-critical 
functions as an engineering goal rather than a normative requirement. These constraints 
influence fusion algorithm design, necessitating approaches that maintain operational 
integrity under sensor degradation or failure. Robust fusion algorithms are thus essential 
prerequisites for Level 4 and Level 5 autonomous vehicle capabilities. 

1.2. Challenges of Sensor Performance Degradation under Adverse Weather Conditions 
Atmospheric phenomena produce interference patterns that degrade sensor 

performance through absorption, scattering, and refraction [3]. Camera sensors 
experience contrast reduction following the Koschmieder visibility model, where the 
apparent luminance equals the object luminance multiplied by the exponential of negative 
extinction coefficient times propagation distance, plus the atmospheric luminance 
multiplied by one minus the same exponential term. Water droplet accumulation 
introduces geometric distortions, which can be analyzed via point spread functions; 
modulation transfer function values decline by 40-60% during rainfall exceeding 2 
millimeters per hour. 

LiDAR degradation follows Mie scattering, where the scattering cross-section 
depends on particle radius and wavelength through the size parameter defined as two 
times pi times radius divided by wavelength [4]. Precipitation generates forward and 
backscatter, producing spurious points and range bias; refraction and multipath effects 
can distort apparent range, mitigated via outlier rejection and attenuation modeling. The 
attenuation coefficient can be empirically estimated, for example, k_rain equals 0.43 times 
rainfall rate to the power of 0.61 at 905 nanometers, where rainfall rate is expressed in 
millimeters per hour. 

Electromagnetic propagation through precipitation is subject to frequency-
dependent attenuation, where gamma equals k times rainfall rate to the power of alpha, 
expressed in decibels per kilometer, with empirically calibrated coefficients. Multipath 
effects during precipitation generate ghost targets through ground reflection, causing 
bearing uncertainties up to approximately 5 degrees and range ambiguities exceeding 10 
meters under severe conditions. Thermal expansion further affects calibration, where the 
angular error equals the thermal coefficient multiplied by the temperature difference, 
multiplied by structural span divided by mounting separation, inducing systematic drift. 

1.3. Research Objectives and Contributions 
This study introduces three key innovations to mitigate weather-induced perception 

degradation. First, weather-aware sensor performance modeling constructs empirical 
degradation functions via regression analysis of 10,000 hours of annotated sensor data. 
Piecewise linear approximations balance computational efficiency with modeling fidelity, 
maintaining correlation coefficients above 0.85 across weather categories while enabling 
real-time execution. 

Second, dynamic reliability scoring applies Bayesian inference to quantify real-time 
trustworthiness, computing posterior distributions of reliability given measurements and 
weather conditions, where reliability represents the sensor state, measurements are z, and 
environmental conditions are w. Operating at 20 Hz, the algorithm integrates 
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environmental context using 30-60 second temporal smoothing for stability against 
transients, while 5-15 second response windows capture genuine transitions. 

Third, adaptive fusion formulates weight allocation as a constrained optimization 
problem: minimize the sum over i of weight_i times the sensor uncertainty squared, 
subject to the sum of weights equal to one, and each weight greater than or equal to a 
minimum threshold. Here, sensor uncertainty quantifies the individual sensor's reliability, 
while the minimum weight prevents complete exclusion. The framework demonstrates 
agility, adapting within 2-second windows while maintaining O (n squared) 
computational complexity for an n-sensor configuration. 

2. Related Work and Technical Challenges 
2.1. Current Multi-Sensor Fusion Approaches in Autonomous Vehicles 

Contemporary fusion architectures implement hierarchical processing by combining 
measurements at multiple abstraction levels [5]. Early fusion concatenates raw sensor data 
into joint feature spaces and applies convolutional networks with three-dimensional 
kernels for simultaneous processing of images and LiDAR voxels. These architectures 
achieve approximately 8.3% higher detection accuracy compared with single-modality 
baselines but require around 4.2 times more computational resources for operation at 10 
Hz. 

Late fusion processes sensor streams through independent pipelines before 
combining outputs using non-maximum suppression and probabilistic association [6]. 
Modular architectures enable parallel GPU processing, achieving 30 Hz operation with 
250 milliseconds latency. Detection-level fusion typically employs the Hungarian 
algorithm for bipartite matching, optimizing assignments based on spatial proximity and 
appearance similarity. 

Transformer-based networks leverage attention mechanisms to learn sensor 
importance through self-supervised training on extensive driving datasets. Attention 
modules compute cross-modal correlations by performing dot-product operations 
between encoded features, producing importance maps that highlight complementary 
regions. These approaches demonstrate approximately 15.8% improvement in detection 
recall compared with manually designed weighting strategies, albeit with a 
computational cost of around 500 GFLOPS. 

Probabilistic graphical models represent measurements as factor graphs, connecting 
state variables through measurement factors and motion constraints. Optimization 
minimizes the negative logarithm of the posterior probability of the state given the 
measurements, typically converging within ten iterations for urban scenarios. Factor 
graphs can naturally handle asynchronous measurements and missing data through 
marginalization. 

2.2. Weather-Induced Sensor Performance Limitations and Failure Modes 
Empirical studies reveal sensor-specific vulnerability profiles under adverse weather 

[7]. Camera detection range exhibits exponential deterioration, calculated as the clear-
weather range multiplied by the exponential of negative attenuation coefficient times 
precipitation rate. For example, with an attenuation coefficient of 0.15, classification 
accuracy can drop from a baseline of 92% to 61% during heavy precipitation exceeding 5 
millimeters per hour. 

LiDAR point cloud degradation can be modeled as the clear-weather number of 
returns multiplied by one minus the per-meter scattering probability raised to the 
propagation distance. Empirical campaigns show a 73 percentage-point reduction at 50 
meters during 10 millimeters per hour rainfall, with false positive rates increasing from 
2.1% to 18.7% due to precipitation backscatter. Missing points concentrate in forward-
facing sectors, creating directional blind spots [8]. 

Radar resolution deteriorates from the nominal 2.5 degrees to 4.1 degrees beam width 
in dense fog due to refraction and multipath effects. Thermal cycling induces 
approximately 0.3 degrees angular error per 10-degree Celsius temperature change. Sub-
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zero conditions amplify vibration magnitudes by 35%, introducing high-frequency noise 
exceeding 50 Hz, which can corrupt inertial measurements. Thermomechanical coupling 
generates differential stress patterns that manifest as systematic biases. 

2.3. Existing Reliability Assessment Methods and Their Limitations 
Statistical frameworks use chi-squared testing to validate measurement consistency 

against nominal distributions [9]. The test statistic is calculated as the sum over all 
observations of the squared difference between measurement and mean, divided by the 
variance. This statistic follows a chi-squared distribution, enabling hypothesis evaluation 
with 95% confidence. Adaptive outlier rejection adjusts sensitivity from three standard 
deviation limits under favorable conditions to five standard deviation limits during 
disturbances. 

Machine learning methods employ random forest models with 100 decision trees, 
achieving approximately 94.2% classification accuracy on annotated failure datasets [10]. 
Feature engineering extracts 47 statistical descriptors, including temporal autocorrelation, 
spectral entropy, and cross-sensor correlation over one-second windows. 

Information-theoretic approaches estimate reliability using mutual information 
normalized by measurement entropy, where sensors with high mutual information are 
assigned increased weights, while random behavior results in reliability approaching zero 
[11]. Computation requires approximately 50 milliseconds for urban scenes containing 
100 objects. 

Existing frameworks generally lack explicit weather modeling, treating sensor 
degradation uniformly regardless of the underlying cause. This limitation prevents 
targeted mitigation and often results in conservative rejection, unnecessarily reducing 
system capability. Incorporating weather-aware reliability assessment allows retention of 
partially degraded sensors by appropriately modeling their uncertainty. 

3. Multi-Sensor Reliability Assessment Framework 
3.1. Weather-Aware Sensor Performance Modeling and Degradation Analysis 

Sensor performance modeling establishes degradation functions through regression 
analysis of annotated measurements across atmospheric conditions. Empirical coefficients 
α_sensor(w) relate the weather state w to sensor performance, where α is in the range [0,1] 
representing capability retention. Piecewise linear interpolation between discrete 
categories enables continuous estimation while maintaining computational efficiency. 

Camera degradation incorporates visibility V_met to compute extinction using σ_ext 
= 3.912 / V_met following Koschmieder's law. Contrast reduction is quantified as C_r = 
exp (-σ_ext * d) at distance d, establishing the detection probability P_detect = P_clear * 
C_r * α_precipitation, where α_precipitation accounts for lens contamination. Validation 
across 5,000 images demonstrates a correlation coefficient r = 0.87 between predicted and 
observed detection rates. 

LiDAR models implement modified Mie theory for polydisperse distributions. 
Backscatter is computed as β(r) = Σ (n_i * σ_i), aggregating contributions from particles 
with density n_i and cross-section σ_i. Range-dependent attenuation follows A(r) = exp (-
2 ∫ β (r') dr'), creating non-linear patterns varying with atmospheric stratification. 
Validation against 3,000 events confirms accuracy within 15% for rainfall rates below 20 
mm/hr. 

Radar modeling follows ITU-R recommendations for 77 GHz attenuation. Two-way 
attenuation is calculated as L = 2 ∫ γ(r) dr, where γ = 0.38 * R ^ 0.72 for horizontal 
polarization. Doppler broadening quantifies velocity degradation as σ_v = 0.13 * R ^ 0.5 
[12]. 

As shown in Table 1, sensor performance degradation coefficients are provided for 
different weather conditions. 
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Table 1. Sensor Performance Degradation Coefficients Under Different Weather Conditions. 

Weather 
Condition 

Visibility 
(m) 

Camera 
Coefficient 

LiDAR 
Coefficient 

Radar 
Coefficient 

Temperatur
e Factor 

Clear >10000 0.95 0.92 0.88 1.00 
Light Rain 
0.5-2mm/h 5000 - 8000 0.78 0.75 0.85 0.98 

Moderate 
Rain (2 - 
5mm/h) 

2000 - 5000 0.52 0.45 0.78 0.96 

Heavy Rain 
(>5mm/h) 500 - 2000 0.31 0.23 0.71 0.94 

Light Fog 1000 - 3000 0.65 0.82 0.83 0.97 
Dense Fog 50 - 200 0.15 0.68 0.76 0.95 
Light Snow 800 - 2000 0.58 0.38 0.74 0.89 

Heavy 
Snow 100 - 500 0.22 0.12 0.62 0.85 

Freezing 
Rain 300 - 800 0.28 0.18 0.68 0.82 

Mixed 
Precipitatio

n 
200 - 600 0.35 0.25 0.65 0.88 

Night + 
Light Rain 1000 - 3000 0.42 0.71 0.82 0.96 

Night + Fog 50 - 500 0.18 0.64 0.73 0.94 
Temperature compensation is modeled as T_factor = 1 - 0.02 * |T - 20|, where 20°C is 

the reference temperature. The composite coefficient α_total = α_weather * T_factor * 
α_mechanical combines atmospheric, thermal, and mechanical factors. Cross-validation 
demonstrates a mean absolute error of 0.08 for coefficient prediction. 

3.2. Real-Time Reliability Estimation Algorithm for Camera, LiDAR and Radar 
Environmental assessment employs computer vision for atmospheric 

characterization. Precipitation detection isolates rain streaks through temporal 
differencing, while fog quantification analyzes Fourier spectra to characterize scattering 
intensity. These methods enable robust classification across meteorological conditions. 

Measurement validation uses the Mahalanobis distance: 
d_M = √ ((z - μ) ^ T * Σ ^ (-1) * (z - μ)) 
for outlier identification, where μ and Σ encode Kalman filter predictions. 

Observations violating d_M > χ²_α(n) trigger reliability penalties, with χ²_α(n) 
representing critical values at significance α for n dimensions. Adaptive thresholds 
transition from α = 0.01 under benign conditions to α = 0.05-0.10 under adverse conditions, 
balancing sensitivity against false alarms. 

Temporal consistency is evaluated through sliding windows computing the 
coefficient of variation: 

CV = σ / μ 
Stable sensors maintain CV < 0.15, while degraded sensors manifest CV > 0.35. 

Intermediate values trigger proportional adjustments. Spectral analysis identifies periodic 
disturbances via FFT to detect mechanical resonances [13]. 

As shown in Figure 1, the real-time sensor reliability estimation architecture 
integrates these modules. 
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Figure 1. Real-Time Sensor Reliability Estimation Architecture. 

Cross-sensor correlation is quantified as: 
ρ_ij = cov (z_i, z_j) / (σ_i * σ_j) 
Strong correlation (ρ > 0.7) confirms sensor veracity, while deficiency signals 

malfunction or occlusion. Matrix computation at 5 Hz enables fault detection within 200 
ms. 

Historical tracking uses exponentially weighted averaging: 
R_avg = 0.1 * R_current + 0.9 * R_previous 
Linear regression over 60-second windows identifies degradation trends, triggering 

alerts when rates exceed 0.01 per minute. Performance history is maintained for 24 hours 
at 1 Hz granularity. 

As shown in Table 2, reliability scoring parameters and thresholds are defined for 
each sensor. 

Table 2. Real-Time Reliability Scoring Parameters and Thresholds. 

Assessment 
Criteria Parameter Camera LiDAR Radar 

Weight 
Factor 

Environme
ntal Impact 

Precipitatio
n Weight 0.65 0.58 0.32 0.40 

Environme
ntal Impact Fog Weight 0.72 0.45 0.28 0.35 

Environme
ntal Impact 

Temperatur
e Weight 

0.25 0.30 0.15 0.15 

Environme
ntal Impact 

Wind 
Weight 0.18 0.22 0.12 0.10 

Measureme
nt 

Consistency 

Spatial 
Accuracy 

(±m) 
0.8 0.3 0.5 0.30 

Measureme
nt 

Consistency 

Temporal 
Stability 

(CV) 
0.15 0.12 0.18 0.25 

Measureme
nt 

Consistency 

Inter - 
sensor 

Agreement 
0.75 0.80 0.70 0.20 

Central Reliability
Scoring Engine

Multi-criteria Decision Matrix
Scores: 0.0 - 1.0

Environmental Context
Module

• Meteorological Data
• Weather Classification

• 5 Severity Levels
• Visual Detection

Measurement Quality
Module

• SNR Analysis
• Temporal Stability

• Spatial Consistency
• Cross-correlation

Historical Performance
Module

• 300s Windows
• Trend Analysis

• Degradation Detection
• EWMA Filtering

Fusion Decision
Module

• Camera Reliability
• LiDAR Reliability
• Radar Reliability
• Adaptive Weights

Weather Context Quality Metrics

Performance Trends Reliability Scores20 Hz Processing
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Measureme
nt 

Consistency 

Detection 
Range (m) 150 200 300 0.25 

Historical 
Performanc

e 

Short - term 
Weight 
(180s) 

0.60 0.55 0.65 0.60 

Historical 
Performanc

e 

Long - term 
Weight 
(3600s) 

0.40 0.45 0.35 0.40 

Historical 
Performanc

e 

Degradatio
n Threshold 

0.20 0.25 0.15 - 

Historical 
Performanc

e 

Recovery 
Time (s) 45 60 30 - 

Quality 
Thresholds 

Minimum 
Reliability 0.15 0.20 0.25 - 

Quality 
Thresholds 

Warning 
Level 0.35 0.40 0.45 - 

Quality 
Thresholds 

Optimal 
Level 

0.85 0.80 0.75 - 

Computational optimization achieves 8 ms latency via SIMD vectorization and GPU-
accelerated inference. Memory bandwidth is optimized through caching and prefetching. 
The modular architecture allows selective computation based on sensor availability. 

3.3. Dynamic Reliability Scoring Mechanism Based on Environmental Conditions 
Hierarchical Bayesian inference is formulated as: 
P (R | z, w, h) 
where R represents reliability, z the observations, w the atmospheric state, and h the 

historical context. The prior P (R | w, h) integrates weather degradation with long-term 
trends, while the likelihood P (z | R) evaluates consistency. Posterior approximation uses 
variational inference, converging in 5 iterations via coordinate descent. 

Short-term reliability is aggregated as: 
R_short = Σ (w_i * r_i) 
with r_i in [0,1] and normalized weights w_i summing to 1. Weight determination 

minimizes entropy: 
Σ (w_i * log(w_i)) 
subject to performance constraints, promoting balanced utilization. Interior point 

methods achieve convergence within 2 ms for 3-sensor configurations. 
Long-term evolution is modeled as a state-space system: 
R_t = f (R_t-1, u_t) + ε_t, ε_t ~ N (0, Q) 
z_t = h (R_t) + η_t, η_t ~ N (0, R) 
Extended Kalman filtering provides recursive estimation with O(n²) complexity. 
As shown in Figure 2, the evolution of dynamic reliability scores during weather 

transitions is illustrated. 
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Figure 2. Dynamic Reliability Score Evolution During Weather Transition Events. 

Spatial mapping divides the field-of-view into angular θ_i and range r_j cells, 
computing R (θ_i, r_j) for each. Weather effects are non-uniform, with forward sectors 
experiencing up to 40% greater degradation during frontal precipitation. This enables 
selective utilization, extracting maximum information while suppressing unreliable 
regions. 

The geometric mean: 
(Π R_i) ^ (1/n) 
achieves optimal balance, maintaining sensitivity to degradation while preventing 

catastrophic collapse, outperforming arithmetic averaging and minimum operators. 
As shown in Table 3, reliability score integration weights are defined for different 

operational scenarios. 

Table 3. Reliability Score Integration Weights for Different Operational Scenarios. 

Operationa
l Scenario 

Speed 
(km/h) 

Camera 
Weight 

LiDAR 
Weight 

Radar 
Weight 

Safety 
Factor 

Urban 
Driving 20 - 50 0.45 0.35 0.20 1.2 

Suburban 
Driving 40 - 70 0.38 0.32 0.30 1.1 

Highway 
Driving 

80 - 120 0.25 0.25 0.50 1.0 

Constructio
n Zone 

10 - 30 0.25 0.55 0.20 1.5 

Parking 
Operations 0 - 10 0.33 0.33 0.34 1.8 

School Zone 15 - 25 0.50 0.30 0.20 1.6 
Night 
Urban 

20 - 50 0.30 0.45 0.25 1.3 

Night 
Highway 

80 - 120 0.20 0.30 0.50 1.2 

1.0

0.8

0.6

0.4

0.2
0 150 300 450 600 Time (s)

Re
lia

bi
lit

y 
Sc

or
e

Clear Light Rain Moderate Rain Heavy Rain Peak Rain

Sensor Reliability
Camera (0.92→0.31)
LiDAR (0.89→0.18)
Radar (0.65→0.58)

Composite
Precip. (0→8mm/h)

0.92

0.31

0.89

0.18

0.65

0.58

Performance Analysis
• Camera: Most affected by rain
• LiDAR: Severe precipitation impact
• Radar: Best weather resistance
• Adaptive weighting needed
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Rain 
Modifier 

- 0.6 0.7 1.2 - 

Fog 
Modifier - 0.4 0.8 1.1 - 

Snow 
Modifier - 0.5 0.6 1.3 - 

Clear 
Weather 
Modifier 

- 1.0 1.0 1.0 - 

Operational context modulates thresholds through risk-aware boundaries. Dense 
urban environments with pedestrian concentrations exceeding 10 per km² mandate 1.5× 
safety amplification. Highway scenarios prioritize long-range detection, redistributing 
weights toward distant bins. 

4. Adaptive Fusion Algorithm Design and Implementation 
4.1. Weight Allocation Strategy Based on Sensor Reliability Scores 

Weight allocation is formulated as a quadratic optimization problem, determining w 
= [w_camera, w_LiDAR, w_radar] to minimize 

J(w) = w ^ T * Σ * w 
where Σ encodes reliability-scaled covariance. Constraints enforce Σw_i = 1 and w_i 

≥ R_i * w_min to ensure proportional contribution. 
Sequential quadratic programming uses gradient ∇J = 2 * Σ * w and Hessian H = 2 * 

Σ, achieving convergence within 3-5 iterations. Warm-starting reduces computation to 2 
iterations for frame transitions. Cholesky decomposition exploits matrix structure, 
requiring 0.8 ms on embedded processors. Active set methods maintain feasibility 
throughout iterations. 

Uncertainty propagation employs the unscented transform for nonlinear models. 
Sigma points are defined as X_i = μ ± √ ((n + κ) * Σ), where n is the dimension and κ = 3 - 
n provides accuracy. The transformed covariance is computed as P_y = Σ (W_i * (Y_i - μ_y) 
* (Y_i - μ_y) ^ T), aggregating contributions and generating uncertainty ellipsoids. 

Cross-validation across 1,000 scenarios confirms an 18.3% RMSE reduction under 
adverse weather. Metrics include position RMSE, classification accuracy, and track 
consistency, with validation emphasizing edge cases where sensor degradation deviates 
from typical patterns [14]. 

As shown in Figure 3, the adaptive weight allocation response to environmental 
changes is illustrated. 

 
Figure 3. Adaptive Weight Allocation Response to Environmental Changes. 
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Temporal adaptation follows 
w_t = 0.3 * w_optimal + 0.7 * w_t-1 
balancing responsiveness against stability. Abrupt transitions trigger verification 

against safety constraints, while monitoring prevents pathological dependencies by 
enforcing w_i ≤ 0.75 upper bounds. 

As shown in Table 4, sensor weight allocation matrices are provided for weather-
specific scenarios. 

Table 4. Sensor Weight Allocation Matrix for Weather-Specific Scenarios. 

Weather 
Scenario 

Precipitat
ion 

(mm/h) 

Visibility 
(m) 

Camera 
Weight 

LiDAR 
Weight 

Radar 
Weight 

Confiden
ce Level 

Clear Day 0 >10000 0.40 0.35 0.25 0.95 
Clear 
Night 0 >5000 0.28 0.42 0.30 0.88 

Light 
Rain Day 0.5 - 2.0 

3000 - 
8000 0.30 0.28 0.42 0.82 

Light 
Rain 

Night 
0.5 - 2.0 

1500 - 
4000 0.22 0.25 0.53 0.76 

Heavy 
Rain Day >5.0 500 - 2000 0.15 0.20 0.65 0.71 

Heavy 
Rain 

Night 
>5.0 200 - 1000 0.08 0.20 0.72 0.65 

Light Fog 0 1000 - 
3000 

0.25 0.35 0.40 0.80 

Dense 
Fog 0 50 - 200 0.10 0.32 0.58 0.68 

Light 
Snow 1.0 - 3.0 800 - 2000 0.20 0.25 0.55 0.73 

Heavy 
Snow 

>5.0 100 - 500 0.12 0.18 0.70 0.62 

Freezing 
Rain 

0.5 - 2.0 300 - 800 0.18 0.22 0.60 0.58 

Mixed 
Precipitat

ion 
2.0 - 5.0 200 - 600 0.16 0.24 0.60 0.64 

Implementation employs lookup tables for common scenarios, SIMD vectorization 
for matrix operations, and pipeline parallelization across channels. Memory footprint 
remains below 10 MB including precomputed tables. 

4.2. Environmental Context-Aware Fusion Decision Making 
Context-aware decision making integrates meteorological measurements, traffic 

estimation, and map priors into strategy selection. Hierarchical state machines with 
S_weather ∈ {clear, light, moderate, severe} and S_operation ∈ {parking, urban, highway, 
emergency} trigger parameter updates, adapting thresholds, gates, and tracking 
parameters. 

Weather classification processes precipitation rate, visibility, and 
temperature/humidity through fuzzy membership functions μ_i (x), enabling gradual 
transitions. Defuzzification via the centroid provides a continuous severity score s ∈ [0,1], 
allowing smooth interpolation. 
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Traffic density is analyzed using radar and camera detections, computing vehicles 
per area and categorizing as sparse (<10/km²), moderate (10-50/km²), or dense (>50/km²). 
Higher densities bias the system toward conservative strategies, increasing confidence 
thresholds from 0.6 to 0.85, with initialization requiring 3-5 detections. 

Map priors incorporate HD annotations for topology, lanes, and patterns. Prior 
probabilities P(object|location) weight detections according to distribution. Intersections 
increase pedestrian priors 3×, while highways suppress pedestrian hypotheses. Detection 
integration follows: 

P (object|detection, location) ∝ P(detection|object) * P(object|location) 
Predictive adaptation anticipates changes using weather radar forecasts for 15 

minutes, enabling preemptive adjustments. Route analysis identifies challenging 
segments, triggering specialized configurations. This framework reduces adaptation 
latency from 2 s to 0.5 s. 

Safety envelope verification ensures risk-aware decisions, using formal verification: 
φ = G (distance_min > d_safe) 
Reachability analysis at 1 Hz validates configurations against worst-case degradation. 

Failed verification triggers a conservative fallback prioritizing collision avoidance [15]. 

4.3. Robust Data Association and Conflict Resolution Mechanisms 
Data association establishes correspondences through: 
L(A) = Π P(z_i|x_j) * P(A) 
where A represents the assignment. The Hungarian algorithm solves max_A L(A) 

with O(n³) complexity, while multiple hypothesis tracking maintains K-best solutions for 
ambiguous cases. 

Spatial gates use: 
d²_M = (z - Hx) ^ T * S ^ (-1) * (z - Hx) < γ 
where S = H * P * H^T + R, and γ denotes thresholds adapting from γ = 9.21 (99% 

confidence for 2D) in clear conditions to γ = 16.27 (99.9%) in adverse weather. 
Temporal association enforces consistency: 
LLR_t = LLR_t-1 + log (P_D * P(z|x) / P_FA) 
where P_D denotes detection probability and P_FA is the false alarm rate. Tracks 

exceeding T_confirm ∈ [3,8] are confirmed, while scores below T_delete ∈ [-5, -2] are 
terminated. 

Conflict resolution aggregates estimates through: 
x_consensus = Σ (w_i * x_i) / Σw_i 
weighted by reliability and precision. RANSAC with iterations N = log (1-0.99) / 

log(1-w^m) maintains robustness against failures and interference. 
False positive suppression verifies geometric consistency, including object 

dimensions, ground alignment, and occlusions. Temporal filters require N_min ∈ [2,5] 
detections within windows. Semantic validation rejects implausible detections based on 
scene context. 

Measurement fusion employs covariance intersection: 
P^ (-1) = ω * P_1^ (-1) + (1-ω) * P_2^ (-1) 
x = P * (ω * P_1^ (-1) * x_1 + (1-ω) * P_2^ (-1) * x_2) 
where ω minimizes trace(P), providing conservative estimates without knowledge of 

correlations. 

5. Experimental Evaluation and Performance Analysis 
5.1. Simulation Setup and Real-World Dataset Description 

Validation encompasses both simulation and real-world datasets totaling 10,000 
operational hours. Physics-based simulations achieve correlation coefficients of 0.92 for 
camera, 0.89 for LiDAR, and 0.94 for radar. Weather simulation utilizes particle systems 
for precipitation, volumetric ray marching for fog, and physically-based lighting for 
diurnal variations. 
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Field data collection deployed five vehicles across diverse regions: Pacific Northwest 
(3,500 hours, predominantly in precipitation), Upper Midwest (2,800 hours, snow-prone 
conditions), and California Central Valley (3,700 hours, fog-prone regions). The 
aggregated weather distribution across all areas includes 5,600 hours of precipitation 
(56%), 3,700 hours of snow (37%), and 700 hours of fog/mixed (7%). Sensor configurations 
consist of six cameras (1920×1080 at 30 Hz), two LiDAR units (128 channels at 10 Hz), and 
five radars (77 GHz at 20 Hz). Ground truth is provided via differential GPS with RTK, 
achieving 2 cm accuracy and synchronized within 1 ms through PTP. 

The weather distribution further details clear skies (4,200 hours, 42%), light 
precipitation (2,300 hours, 23%), moderate precipitation (1,800 hours, 18%), heavy 
precipitation (1,000 hours, 10%), and fog/mixed conditions (700 hours, 7%). Precipitation 
rates range from 0.1 to 50 mm/hr, with visibility spanning 10 m to unlimited. 
Temperatures vary from -25°C to 45°C. 

Dataset annotation includes 8.7 million vehicles, 2.3 million pedestrians, and 1.1 
million cyclists, each with 3D bounding boxes and tracking. Weather labels are derived 
from meteorological stations within 5 km, calibrated against on-vehicle sensors. Semi-
automated pipelines achieve 96.3% inter-annotator agreement for objects and 91.7% for 
weather labels. 

5.2. Comparative Analysis with Existing Fusion Methods under Various Weather Scenarios 
Evaluation compares the adaptive fusion method against fixed-weight, majority 

voting, Kalman filter, and learned fusion baselines. Metrics include detection accuracy, 
false positives, tracking consistency, and computational efficiency across different 
weather conditions. 

Average precision at IoU 0.5 demonstrates notable improvements during adverse 
weather. In clear weather, performance remains comparable (proposed: 89.3%, fixed-
weight: 88.1%, majority-vote: 86.7%, Kalman: 87.9%, learned: 88.5%). Under heavy rain, 
the proposed method achieves AP@0.5 of 71.2%, compared to 52.8% for fixed-weight and 
48.3% for majority-vote, corresponding to absolute improvements of +18.4 and +22.9 
percentage points, respectively, enabled by weather-aware adaptation. 

False positive rates during precipitation are significantly reduced. The proposed 
method maintains 8.3 false positives per kilometer during heavy rain, compared to 24.7 
for fixed-weight, 31.2 for majority voting, 22.1 for Kalman, and 15.8 for learned fusion. 
This 73% reduction relative to majority voting translates to fewer phantom braking events. 
Statistical significance is confirmed with p < 0.001 for adverse weather differences. 

MOTA scores demonstrate system robustness: the proposed method achieves 76.4% 
during moderate rain versus 61.2% for fixed-weight, representing a 24.8% improvement. 
Track fragmentation is reduced by 41% through adaptive selection, preserving continuity 
during sensor failures. Identity switches decrease from 4.7/minute to 1.8/minute in 
challenging scenarios. 

Computational analysis indicates 18.3 ms latency on an NVIDIA Jetson AGX Xavier. 
Adaptive fusion adds only 3.7 ms overhead compared to the fixed-weight baseline. 
Memory utilization remains below 850 MB, while power consumption increases by 2.3 W 
during adverse weather for reliability assessment tasks. 
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