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Abstract: Payment fraud continues to evolve, resulting in global losses of approximately $33.83
billion last year alone. We developed a system capable of highly effective fraud detection by
analyzing spending behavior over time rather than focusing solely on individual transactions. While
fraudsters can imitate a single purchase, it is far more difficult for them to replicate an entire
behavioral history. Our key innovation lies in a hierarchical architecture that combines modified
gated recurrent units (GRUs) with gradient boosting methods, allowing each component to perform
its specialized role. The proposed system achieves an area under the precision-recall curve (AUPRC)
of 0.876 and a Recall@1%FPR of 0.834 on the IEEE-CIS dataset comprising 590,540 transactions. In
production-level stress tests, it sustains throughput up to 12,000 transactions per second under peak
load conditions (with an average daily volume of approximately 3.4 million across partner
institutions) and maintains a median latency of 47.3 ms (95% CI: [45.8, 48.9] ms; p95: 67.2 ms),
remaining consistently below the 50 ms operational threshold. The system's core mechanism
involves a temporal-gap-aware gating module within the modified GRU encoder that captures
irregular intervals between purchases, effectively distinguishing genuine consumer behavior from
fraudulent activity. This encoder is integrated with an ensemble of LightGBM, XGBoost, and
Random Forest models, enabling robust voting-based decision fusion. To balance interpretability
and performance, the system employs selective explainability-providing gradient-based
attributions and counterfactual explanations only for the 5% of transactions flagged as high-risk-
thereby ensuring regulatory transparency without compromising speed. Extensive validation using
real banking datasets from three financial institutions confirmed its reliability and practicality.
While not flawless, the system demonstrates sufficient robustness and interpretability for large-
scale deployment-an outcome that ultimately matters more than theoretical optimality when
millions of dollars are at stake each day.
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1. Introduction

The scale of financial fraud is staggering. In 2023, payment card fraud alone resulted
in losses of $33.83 billion worldwide. The United States accounted for $14.3 billion of that
total, despite representing only about one quarter of global card volume. Yet the statistics
reveal only part of the story-the nature of fraud itself has changed dramatically. Modern
fraud operations are no longer simple cases of stolen card numbers. Today's attackers
employ advanced techniques: they use machine learning models, conduct A/B testing on
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attack strategies, and continuously optimize their methods much like major corporations
refine marketing campaigns.

Our internal data indicates that approximately 42.5% of detected fraudulent activity
now exhibits algorithmic regularities. These include velocity-based attacks designed to
exploit batch processing windows, transaction sequences calibrated to stay just below
detection thresholds, and merchant category progressions that imitate legitimate
consumer behavior. Traditional rule-based systems cannot keep up with such evolving
threats. Static machine learning models, even those trained just six months prior, quickly
become outdated. Financial institutions now require adaptive systems that evolve
alongside the threat landscape and, just as importantly, can explain their decisions to
human investigators responsible for final assessments [1].

The key lies in analyzing behavioral sequences rather than isolated events. Consider
personal spending habits: coffee in the morning, lunch near the office, groceries on
weekends-patterns emerge naturally. Fraudsters can simulate individual transactions,
even convincing ones, but replicating the nuanced consistency of weeks or months of
genuine behavior is nearly impossible. Our system leverages this insight by processing
transaction histories as temporal sequences, employing modified recurrent network
architectures that capture not only what was purchased, but also when, where, and in
what order. The temporal gaps between transactions are equally informative-legitimate
users tend to exhibit stable inter-purchase intervals, while fraudulent behavior often
reveals irregular or hesitant timing patterns.

However, technical sophistication alone is insufficient if the system cannot perform
at operational scale. Financial institutions handle thousands of transactions per second,
and even an additional 10 milliseconds of latency can cause cascading failures in
production. From the outset, our design prioritized efficiency. We implemented
hierarchical filtering that quickly processes clearly legitimate transactions in about 3
milliseconds, while more suspicious cases undergo deeper analysis averaging 47
milliseconds. Only the highest-risk transactions trigger a full neural evaluation, requiring
approximately 156 milliseconds [2]. This multi-tiered design supports throughput of up
to 12,000 transactions per second (95% CI: [11,400, 12,600]) under sustained load while
preserving accuracy and stability.

Explainability presented a further challenge. Regulatory frameworks demand
transparency, and customers have a right to understand why their transactions are
declined. Yet generating comprehensive explanations can increase computational cost by
three to four times, making real-time performance impractical. Our solution introduces
selective explainability: detailed, gradient-based attributions are generated only for the
roughly 5% of transactions identified as high-risk, while routine transactions receive
simplified rule-based summaries. This approach maintains compliance and user trust
without compromising throughput-a balance achieved after extensive real-world testing
and several production-stage refinements across partner institutions.

2. Related Work
2.1. Evolution of Sequential Behavior Modeling

Sequential modeling for fraud detection has followed an unusual trajectory. It began
with manually written rules crafted by domain experts who understood fraud behavior
but had little exposure to machine learning. These rule-based systems eventually gave
way to classical statistical models that worked well-until fraudsters adapted. The field
then shifted toward deep learning, which promised superior accuracy but often
introduced major operational challenges in real-world environments [3].

A major turning point came when researchers introduced the idea of behavioral
sequence embeddings. Their approach treated transaction histories as linguistic structures:
transactions became "words," cards acted as "documents," and spending behavior formed
a kind of grammar. By compressing months of raw transaction data into compact 256-
dimensional vectors, they achieved significant accuracy improvements-nearly 89% in
benchmark tests. The core innovation was an interval-aware GRU architecture that

131



Journal of Sustainability, Policy, and Practice Vol. 1, No. 4 (2025)

integrated a time-gap term into the reset gate, represented as f t=o (W_f - [h_{t-1}, x_t,
At] + b_f). This At component captured the intervals between purchases, revealing that
fraudsters pause between transactions differently from legitimate users-a small but
crucial behavioral cue.

Another key contribution came from the introduction of bidirectional sequence
models, which considered not only past-to-future dependencies but also future-to-past
influences. This bidirectional processing allowed the system to contextualize earlier
transactions based on subsequent behavior, improving the model's ability to detect
coordinated fraudulent activity. However, such models demanded immense
computational resources, often stretching system memory limits in practice [4].

A further creative leap involved converting transaction sequences into image-like
representations using Markov Transition Fields. In this approach, the matrix M_ij = W_
{q_i, q_j} encoded behavioral transition probabilities as pixel intensities. Convolutional
neural networks-originally designed for image recognition-were then repurposed to
analyze these visualized patterns. Surprisingly, this unconventional fusion of computer
vision and fraud analytics yielded accuracy rates around 87%, proving that spatial
encodings of temporal dynamics could uncover hidden behavioral structures.

2.2. Self-Supervised and Multi-Modal Advances

The impact of self-supervised learning arrived later in fraud detection but proved
transformative. One pioneering study demonstrated that models trained on unlabeled
transaction data could outperform supervised systems. By exposing neural networks to
millions of legitimate transaction sequences without explicit fraud labels, the models
learned the patterns of normal behavior so thoroughly that anomalies stood out naturally.
Accuracy exceeded 91%, surpassing traditional supervised baselines by a significant
margin. Replicating such results required extensive computational effort but confirmed
the power of unsupervised pre-training for anomaly detection [5].

Building on this, researchers began integrating multiple data sources-clickstreams,
session logs, and device fingerprints-into unified low-dimensional embeddings. These
compact 147-dimensional representations preserved essential behavioral cues while
reducing redundancy. In some cases, most features could be compressed to fewer than
ten dimensions without measurable loss in performance. The underlying principle was
straightforward: high dimensionality is often unnecessary when behavior follows
consistent structural patterns. Implementation details, particularly normalization and
temporal alignment steps, were critical to replicating these strong results in practice.

2.3. Computational Efficiency and Real-Time Processing

Production-scale fraud detection systems must balance accuracy with efficiency. One
notable optimization reformulated static transaction graphs into temporal edge-based
structures, achieving a fifty-fold speedup while retaining approximately 88% accuracy.
This improvement illustrated how thoughtful structural redesigns could enhance both
performance and scalability without major sacrifices in predictive quality [6].

Explainability, however, remains a persistent challenge. Gradient-based
interpretability frameworks can make model decisions transparent but often slow
inference by a factor of three or more. Whether this trade-off is acceptable depends on
regulatory expectations and operational priorities.

At the infrastructure level, microservice-based architectures have demonstrated
scalability up to 45,000 transactions per second, albeit with simplified models that trade
complexity for speed. Other systems maintain weekly behavioral windows while
sustaining throughput of around 8,000 events per second through efficient sliding-
window mechanisms. Some optimized implementations have achieved latencies as low
as 2.3 milliseconds, while others balance richer modeling capacity with response times
near 85 milliseconds. These results collectively highlight the central engineering dilemma
in real-time fraud detection: achieving high interpretability and robustness without
compromising the speed essential for production deployment [7].
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3. Methodology
3.1. Behavioral Sequence Representation Framework
3.1.1. Architectural Design Philosophy

Transaction data arrives in a complex mix of numerical values, categorical identifiers,
timestamps, and geographical coordinates-a challenge for any modeling system.
Conventional methods either concatenate all features, leading to excessive dimensionality,
or process them separately, losing cross-feature interactions. Both strategies fail to achieve
scalable, real-world performance.

Our framework draws inspiration from linguistics, where conversations involve
multiple participants, topics, and temporal flows. Similarly, transaction sequences
combine diverse information streams that must be interpreted together. We decompose
this complexity hierarchically: numerical features are handled in one stream, categorical
variables in another, and temporal features in a third. These streams merge only after
individual optimization, minimizing early-stage interference and improving
generalization [8].

The model dynamically adjusts to varying sequence lengths-an essential feature
discovered through extensive field testing. Fixed-length encoders failed when deployed
across banks with widely differing customer behaviors. Some users made only a few
purchases per month, while others exceeded several hundred. Our adaptive pooling
mechanism ensures consistent 256-dimensional outputs regardless of input length by
applying learned attention weights that highlight the most informative transactions while
down-weighting padding.

Every design choice prioritized speed without sacrificing too much accuracy. Early
prototypes achieved 97% accuracy but required nearly 800 milliseconds per transaction,
making them impractical. Through careful engineering, we systematically optimized
performance: removing batch normalization saved 12 ms, replacing LSTM units with
GRUs saved 23 ms, and halving hidden dimensions from 256 to 128 saved 18 ms. Each
modification reduced complexity, resulting in a model fast enough for real-world
deployment while maintaining competitive accuracy.

3.1.2. Mathematical Formulation and Implementation

While the equations appear simple, their implementation required months of
refinement. Our modified GRU cells incorporate temporal gaps directly into gate
computations:

Reset: r (i, k) = o(W_r[x'(i,k); At (i, k)] + U_r s (i-1, k) + b_r)

Update: z (i, k) =0 (W_z [xX'(4, k); At (i, k)] + U_z s (i-1, k) + b_z)

Candidate: s'(i, k) = tanh(W[x'(i,k); At (i, k)] +r (i, k) © Us (i-1, k) + b)

Hidden: s (i, k) = z(i k) O s (i-1, k) + (1 - z (i, k)) O s'(i,k)

In this formulation, the concatenation [x'(i, k); At (i, k)] integrates temporal gaps
directly into feature inputs rather than processing them separately. Ablation studies
confirmed that this direct integration improved accuracy by 3.2% with only 2 milliseconds
of added latency.

Extensive experiments determined that a two-layer GRU with 128 hidden units
provided the best balance between performance and efficiency. Adding more layers
yielded marginal accuracy gains but caused latency and gradient instability. The final
configuration encodes 100-transaction sequences in approximately 31 milliseconds,
achieving both responsiveness and expressive modeling capacity [9].

3.1.3. Feature Engineering Pipeline

Transaction data holds hidden behavioral narratives when features are properly
constructed. We engineered multiple feature categories to reveal these dynamics:
transaction velocity, merchant pattern transitions, and temporal rhythms. Velocity
features capture urgency patterns that fraudsters struggle to mimic. Merchant affinity
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features detect sudden deviations from habitual categories, and temporal features reveal
timing anomalies such as unusual purchase hours.

As shown in Table 1, twenty-three velocity-related features improved accuracy by
4.3%, while merchant and temporal features contributed 3.7% and 2.9%, respectively.
Additional categories-network and device features-remain in partial deployment due to
higher computational cost.

Table 1. Behavioral Feature Engineering Pipeline Performance.

Feature Dimensionalit Processing Accuracy Implementati
Category y Time (ms) Contribution on Status
Tl;jrellsjcil;n 23 1.8 +4.3% Deployed
Merchant
PZI;;:; 18 2.4 +3.7% Deployed
g;:f;rii 15 1.2 +2.9% Deployed
I;Iee":::;(;zls( 12 8.7 +1.8% Experimental
Device 9 31 +1.2% Limited
Fingerprints ' ' Deployment
Total/Average 77 17.2 +14.9% Mixed

Hierarchical pooling combines multiple temporal resolutions through an
aggregation function W, defined as Z = W(¢_hour(X), ¢_day(X)). Hour-level aggregation
captures fine-grained behavior, while daily aggregation reflects broader spending
patterns. Monthly aggregation provided slight accuracy gains but introduced a 180%
computational overhead, making it impractical for deployment.

3.2. Sequential Risk Scoring Algorithm
3.2.1. Hierarchical Filtering Architecture

Fraud risk assessment operates like medical triage-urgent cases require immediate
attention, while routine ones pass automatically. Our system employs three progressive
filtering layers.

Layer 1 performs statistical screening using threshold-based rules that process
transactions in roughly 3 milliseconds, allowing 78% of legitimate traffic to pass instantly.
Layer 2 applies gradient boosting via LightGBM, balancing speed and accuracy effectively;
it achieves 93.7% accuracy with an average latency of 47 milliseconds. Layer 3 uses neural
networks for the remaining high-risk 2% of transactions, requiring 156 milliseconds per
decision but ensuring precision in critical cases [10].

3.2.2. Ensemble Scoring Formulation

To integrate insights from diverse models, we use an ensemble strategy governed by
a weighted voting scheme:

S(z) = 0(0.45f_lgb(z) + 0.35f_xgb(z) + 0.20f_rf(z))

LightGBM contributes the largest share due to its strong performance and 23-
millisecond inference time. XGBoost and Random Forest provide complementary
perspectives, enhancing robustness. Weights were optimized empirically through grid
search, favoring performance consistency over theoretical symmetry.

3.2.3. Specialized Fraud Detectors

Different fraud types exhibit distinct behavioral signatures, requiring targeted
detection modules. Account takeovers appear as abrupt behavioral changes, effectively
captured by recurrent models with 87.3% precision. Synthetic identity fraud manifests in
relational patterns best handled by graph-based features, yielding 84.7% precision.
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Transaction manipulation blends human and automated elements; hybrid rule-learning
systems detect it with 91.2% precision in 34 milliseconds.

As shown in Figure 1, the hierarchical risk scoring framework balances precision
with latency across fraud categories.

(a) Three-tier Processing Architecture

i 78% Clear
Transaction Input f————» Screening Layer —p °

35,000 TPS

i

Assessment Layer

12,000 TPS
Risk Score
v
Verification Layer

800 TPS

(b) Latency Distribution

800
(c) CPU Utilization by Configuration o0 _1%6ms_

400 47ms
200
3ms
0 I
Screening Assessment Verification
» Median } P99

Figure 1. Hierarchical Risk Scoring Architecture with Latency Measurements.

Calibration ensures that risk scores correspond to true probabilities. Isotonic
regression adjusts model outputs by minimizing the weighted squared error:

P_calibrated = argmin_m X_i w_i (y_i - m(f_i)) 2

This process reduces the expected calibration error from 0.067 to 0.031, improving
reliability by 54% at an additional cost of only 2.3 milliseconds per transaction (As shown
in Table 2 and Table 3).

Table 2. Model Performance Across Fraud Categories (Production Metrics).

Median .
Fraud Precision Recall Fl-score- AUROC  Latency Daily
Type Score (ms) Volume

Account
Takeover
Card-
Not- 0.912 0.867 0.889 0.958 34.2 2.8M
Present
Transacti

0.873 0.812 0.841 0.934 67.3 142K

on
Manipula
tion
Merchant
Fraud
Synthetic
Identity
Ensemble
Combine 0.937 0.892 0.914 0.968 47.3 3.4M
d

0.891 0.834 0.862 0.947 41.7 387K

0.856 0.798 0.826 0.921 52.8 93K

0.847 0.823 0.835 0.915 89.2 67K
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Table 3. Core Performance Metrics for Imbalanced Classification.

Metric Value 95% CI Baseline Comparison
AUPRC 0.876 [0.871, 0.881] +0.23 vs XGBoost
Recall@1%FPR 0.834 [0.821, 0.847] +0.18 vs XGBoost
Recall@0.1%FPR 0.712 [0.695, 0.729] +0.15 vs XGBoost
AUROC 0.968 [0.965, 0.971] +0.02 vs XGBoost
Accuracy 0.937 [0.934, 0.940] +0.019 vs XGBoost

3.3. Explainability Mechanisms

Interpretability is not merely a compliance requirement-it is essential for
collaboration between human analysts and automated systems. Our selective
explainability framework generates detailed explanations only for high-risk transactions,
maintaining transparency without burdening system performance.

Gradient-based attribution identifies feature importance efficiently. Full integrated
gradient computation proved too slow, so we adopted a reduced interpolation approach:

A(z) = (z - z_baseline) x £_{i=1}*{10} VS(z_baseline +i/10 x (z - z_baseline)) / 10

This approximation retains 89% correlation with the full computation while
improving speed by a factor of five.

Attention mechanisms further highlight temporal focus. Single-head attention was
chosen over multi-head variants, trading a minor reduction in interpretability for a 28-
millisecond latency reduction. Human evaluation across 12 analysts confirmed that the
simplified attention maintained sufficient clarity for operational use.

Counterfactual explanations identify minimal feature perturbations that would
change a decision outcome, limited to the top three most influential features to maintain
real-time performance:

minimize | 1x'_top3 - x_top31 |, subject to S(¢(x')) <0.3

As shown in Table 4, our production configuration balances interpretability with
speed.

Table 4. Explainability Method Performance Comparison (Production Configuration).

User

Method Cor.nputation Faithfulness Comprehensio Deployment
Time (ms) Score n Status
Integrated
Gradients 12 0.847 0.68 Production
(Reduced)
SHAP Values 187 0.912 0.74 Oftline Only
Attention 3 0.723 0.81 Production
Weights
LIME 412 0.834 0.79 Disabled
Top-3 o
Counterfactual 47 0.812 0.87 Limited
s Production
Feature
Importance 8 0.691 0.72 Production
(Tree)
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P ti
ermutation 156 0.889 0.65 Experimental
Importance

Finally, human-readable explanations are generated through structured templates
rather than free-form neural text generation. Template-based messages cover 92% of cases
while maintaining sub-10-millisecond generation times. For example:

"Transaction flagged due to unusual velocity (23 transactions in 3 hours, typical: 4-7)
and merchant category deviation (electronics, historical: groceries)."

This rule-based narrative system delivers sufficient clarity for analysts and customers
alike without exceeding latency budgets [11].

4. Experimental Evaluation
4.1. Dataset Characteristics and Experimental Setup

Empirical validation requires a rigorous methodology applied to realistic datasets.
The IEEE-CIS Fraud Detection dataset, containing 590,540 transactions and 394 features,
represents a modern benchmark for real-world fraud detection challenges. Fraud
prevalence stands at 3.5%, corresponding to 20,663 fraudulent transactions among
legitimate ones. The dataset includes diverse feature types-identity markers, transactional
attributes, and engineered signals. To ensure computational efficiency, dimensionality
was reduced to 147 features while preserving 97% of discriminative capacity. For
transparency, results on the public IEEE-CIS dataset are reported, while production
telemetry (post-deployment KPIs) is summarized separately under contractual and
privacy constraints.

Preprocessing addresses practical issues inherent to financial data. Missing values
are substantial-38% for categorical variables and 27% for numerical ones. Mode
imputation is applied to categorical attributes, while medians are used for numeric fields.
More sophisticated imputation approaches yielded only marginal gains-about 0.3%
improvement in accuracy-while tripling processing time. Class imbalance poses
additional challenges: the raw 28:1 legitimate-to-fraud ratio was adjusted to 10:1 using
random under sampling. Although SMOTE variants offered theoretical advantages, their
fourfold increase in training time made them impractical for production-scale
applications [12].

As shown in Figure 2, temporal evolution patterns of fraudulent transactions
demonstrate non-stationary behavior, justifying time-aware splitting.
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(a) Hourly Fraud Rate Distribution (31 Days)
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Figure 2. Temporal Fraud Pattern Evolution Across Dataset.

Temporal consistency is preserved across experimental stages. The training set spans
days 1-213 (70% of the data), the validation set covers days 214-274 (15%), and the test set
comprises days 275-334 (15%). Random splitting inflated apparent accuracy by 4.7%,
while temporal partitioning provided a realistic measure of deployment performance.
Hardware configuration reflected institutional limits: a single NVIDIA V100 GPU with
128 GB RAM. Although higher configurations might yield better performance,
experimental design favored realism over optimization. Training proceeded for up to 24
hours, capped at 100 epochs with early stopping and batch size 256, determined by

memory constraints.

As shown in Table 5, dataset processing and training metrics highlight the

computational profile of each stage.

Table 5. Dataset Processing and Training Metrics.

Dataset Transaction Fraud Rate Features Processing Memory
Split s (%) Used Time Usage
Training Set 413,378 3.48 147 18.3 hours 247 GB
Vahsei“on 88,581 3.52 147 2.1 hours 8.3 GB
Test Set 88,581 3.54 147 1.7 hours 8.3 GB
'Ful.l 590,540 3.50 147 22.1 hours 41.3 GB
Pipeline
Data
Preprocessi
ng
Missing
Value 590,540 - 394—147 3.4 hours 12.1 GB
Imputation
F
cature 590,540 - 147 47hours  18.6GB
Engineering
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Class

. 413,378 3.48—9.1 147 1.2 hours 8.3 GB
Balancing

4.1.1. Production Environment Specifications

Production evaluations were performed on AWS EC2 p3.2xlarge instances (Intel
Xeon E5-2686 v4, 8 vCPUs, 61 GB RAM, Tesla V100 GPU) across three financial
institutions during a 90-day observation window (July-September 2024). Transaction
throughput was measured using controlled load testing via Apache JMeter, scaling from
1,000 to 15,000 transactions per second over 30 minutes. Latency metrics represent 95th
percentile values calculated from 10 million transactions, with confidence intervals
estimated via bootstrap sampling (n=1000).

A/B testing compared the proposed system against legacy rule-based engines using
matched customer segments (treatment: n=847,293 transactions; control: n=839,157
transactions). Statistical significance was verified using two-proportion z-tests at a = 0.05.

4.2. Performance Analysis and Ablation Studies

Empirical findings validate key architectural choices while revealing practical trade-
offs. The system achieved an AUPRC of 0.876, AUROC of 0.968, and Recall@1%FPR of
0.834, accompanied by 93.7% accuracy. Processing throughput reached 12,000
transactions per second, and median latency was 47.3 ms. These results reflect deliberate
engineering compromises rather than theoretical upper bounds.

Baseline comparisons contextualize improvements. Logistic regression achieved 78.4%
accuracy in 2 ms, Random Forests reached 86.3% in 18 ms, standard GRUs achieved 89.7%
in 67 ms, and standalone XGBoost delivered 91.8% in 31 ms. Our architecture's 1.9%
improvement over XGBoost may appear incremental but translates to thousands of
prevented fraud cases daily at production scale.

As shown in Figure 3, the performance-latency relationship reveals how design
trade-offs optimize throughput under real-time constraints.

1.00

Real-time Critical Production Zone Batch Processing
(<20ms) (20-80ms) (>80ms)
K TPS
0.95 .
- Pareto Frontier S
18k TpE120.914 3K TPS ")
Cofffous?) -
0.90 S 8K TPS
[ /I
5 ’
38 25K TIPS
@
i
0.85 ’
.
’
A Bubble Size = Transaction Capacity (TPS)
I, "
’ Low High
’
0.80 '
0.75
Tms 10ms 50ms 100ms 500ms
Median Latency (ms, Tog scale)
Legend: Y 9
LR: Logistic Regression RF: Random Forest XGB: XGBoost LSTM: Long Short-Term Memory

DNN: Deep Neural Network GNN: Graph Neural Network  Ours: Proposed Framework

Figure 3. Performance-Latency Trade-off Analysis.

Ablation experiments further quantify each module's contribution. Behavioral
embeddings enhanced accuracy by 4.8% at the cost of 14 ms. Attention mechanisms added
4.4% precision with 14 ms latency. Hierarchical pooling improved recall by 3.7% for an 8
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ms increase. Calibration, despite its modest 2 ms overhead, reduced reliability error by
54%, demonstrating an excellent cost-benefit ratio.

Systematic error analysis uncovered recurring challenges. International travelers
exhibited higher false positive rates (8.7%) due to contextual variability, while bulk
purchasers faced 6.3% misclassification rates linked to behavioral diversity. Low-value
fraud (under $50) remained difficult to detect-accounting for 72% of undetected cases.
Temporal performance degradation reached 2.8% over 60 days, motivating future
integration of online learning.

As shown in Table 6, ablation outcomes demonstrate how each system component
affects operational and financial metrics.

Table 6. Ablation Study Results with Business Impact.

Dail A 1
Configurati  Accuracy Latency aly Daily False nua
Fraud o, Cost
on Change Change Positives
Caught Impact
Complete 5 celine  Baseline 2,847 4,123 Baseline
Framework
Without 5934
Sequence -4.8% -14ms 2,583 (-264) / -$3.2M
. +1,111
Embedding
Without 2.1% Sms  2,741(-106) 4,567 (+444)  -$1.4M
Attention
Without
Hierarchical -3.2% -11ms 2,689 (-158) 4,891 (+768) -$2.1M
Pooling
Without o 6,234
Calibration -0.4% -2ms 2,823 (-24) 2111 -$0.8M
Without o
Ensemble -1.9% -24ms 2,716 (-131) 4,456 (+333) -$1.6M
Without
Pre- -6.7% -6ms 2,447 (-400) 7,123 -$4.8M
. ’ +3,000
processing
Simplified o 8,567
Model -8.3% -31ms 2,389 (-458) 14444 -$5.9M

Production deployment validated the laboratory findings, though with real-world
adjustments. Over three months, pilots processing 50,000 transactions daily achieved 92.4%
accuracy-1.3% below test results. Partial degradation stemmed from data drift and
operational constraints. System availability averaged 99.7%, with two major outages
traced to memory leaks during feature computation. Notably, customer satisfaction
improved, with complaint rates declining by 23% relative to prior rule-based systems.

5. Conclusions

After eighteen months of development, three production deployments, and extensive
debugging, we conclude that building effective real-world fraud detection systems
requires prioritizing practicality over theoretical elegance. Our framework identifies 93.7%
of fraudulent transactions with a latency of 47.3 ms-figures that may seem modest but
mark the boundary between an operational solution and a purely academic experiment.

The core contribution lies in the orchestration of multiple components rather than
any single innovation. The modified GRU with temporal gap awareness effectively
captures behavioral evolution, while hierarchical filtering separates straightforward from
complex decisions, minimizing unnecessary computation. Selective explainability
generates model interpretations only when essential, preserving speed without
compromising transparency. Each element fulfills a specific role; collectively, they sustain
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real-time performance across three partner banks processing approximately 3.4 million
daily transactions.

Several valuable lessons emerged from bridging research and deployment. Feature
engineering that improved accuracy by 2% during testing caused severe memory leaks in
production-weeks were spent locating pointer arithmetic errors in the C++
implementation. The elegant attention mechanism proposed in early designs was
ultimately removed after introducing significant latency during high-load periods. While
theory favored deep architectures, practice dictated a two-layer design for reliability.
These pragmatic adjustments enabled real deployment, whereas theoretically superior
models often remain confined to research papers.

Nonetheless, limitations persist. Model performance declines by about 2.8% after
sixty days, indicating that fraud behavior evolves faster than our retraining cycle.
International travelers produce false positives at an 8.7% rate, showing that the behavioral
baselines are still too rigid. Moreover, small-value fraud under $50 escapes detection 72%
of the time; although threshold tuning continues, deeper architectural revisions may be
required.

Future improvements should focus on online learning-continuously updating
models instead of relying solely on batch retraining-context-aware baselines that
distinguish legitimate travel patterns from fraud, and multi-scale detection networks
optimized for both micro and macro fraudulent behaviors. Federated learning across
institutions offers another promising direction, allowing shared pattern discovery
without exposing sensitive customer data. Implementation of this approach has already
begun with five participating banks.

The broader implications of this work extend well beyond financial services. Any
field that requires high-speed, high-stakes decision-making with human oversight-such
as medical diagnostics, autonomous systems, or cybersecurity-faces the same trade-offs
among accuracy, interpretability, and computational efficiency. Our results demonstrate
that practical, transparent solutions are achievable, even if they demand compromises and
hands-on engineering rather than theoretical perfection. Perfect fraud detection may
remain unattainable, but effective, deployable detection prevents real financial losses
today-and that pragmatic success ultimately matters most.

Acknowledgments: Three banks trusted us with production data despite competitive risks-that
leap of faith made this research possible. Their fraud teams spent countless hours explaining why
our "brilliant" ideas would fail in practice, saving us from embarrassing deployment disasters.
Graduate students debugged code at 3 AM, found patterns our metrics missed, and maintained
sanity during endless hyperparameter searches. Reviewers forced us to admit our initial claims
were overblown. The operations team prevented catastrophe by catching memory leaks during
stress testing. Industry collaborators revealed that half our assumptions about production
constraints were wrong. This work succeeded because of their brutal honesty about what actually
matters versus what sounds impressive in papers.
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