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Abstract: Payment fraud continues to evolve, resulting in global losses of approximately $33.83 
billion last year alone. We developed a system capable of highly effective fraud detection by 
analyzing spending behavior over time rather than focusing solely on individual transactions. While 
fraudsters can imitate a single purchase, it is far more difficult for them to replicate an entire 
behavioral history. Our key innovation lies in a hierarchical architecture that combines modified 
gated recurrent units (GRUs) with gradient boosting methods, allowing each component to perform 
its specialized role. The proposed system achieves an area under the precision-recall curve (AUPRC) 
of 0.876 and a Recall@1%FPR of 0.834 on the IEEE-CIS dataset comprising 590,540 transactions. In 
production-level stress tests, it sustains throughput up to 12,000 transactions per second under peak 
load conditions (with an average daily volume of approximately 3.4 million across partner 
institutions) and maintains a median latency of 47.3 ms (95% CI: [45.8, 48.9] ms; p95: 67.2 ms), 
remaining consistently below the 50 ms operational threshold. The system's core mechanism 
involves a temporal-gap-aware gating module within the modified GRU encoder that captures 
irregular intervals between purchases, effectively distinguishing genuine consumer behavior from 
fraudulent activity. This encoder is integrated with an ensemble of LightGBM, XGBoost, and 
Random Forest models, enabling robust voting-based decision fusion. To balance interpretability 
and performance, the system employs selective explainability-providing gradient-based 
attributions and counterfactual explanations only for the 5% of transactions flagged as high-risk-
thereby ensuring regulatory transparency without compromising speed. Extensive validation using 
real banking datasets from three financial institutions confirmed its reliability and practicality. 
While not flawless, the system demonstrates sufficient robustness and interpretability for large-
scale deployment-an outcome that ultimately matters more than theoretical optimality when 
millions of dollars are at stake each day. 
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1. Introduction 
The scale of financial fraud is staggering. In 2023, payment card fraud alone resulted 

in losses of $33.83 billion worldwide. The United States accounted for $14.3 billion of that 
total, despite representing only about one quarter of global card volume. Yet the statistics 
reveal only part of the story-the nature of fraud itself has changed dramatically. Modern 
fraud operations are no longer simple cases of stolen card numbers. Today's attackers 
employ advanced techniques: they use machine learning models, conduct A/B testing on 
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attack strategies, and continuously optimize their methods much like major corporations 
refine marketing campaigns. 

Our internal data indicates that approximately 42.5% of detected fraudulent activity 
now exhibits algorithmic regularities. These include velocity-based attacks designed to 
exploit batch processing windows, transaction sequences calibrated to stay just below 
detection thresholds, and merchant category progressions that imitate legitimate 
consumer behavior. Traditional rule-based systems cannot keep up with such evolving 
threats. Static machine learning models, even those trained just six months prior, quickly 
become outdated. Financial institutions now require adaptive systems that evolve 
alongside the threat landscape and, just as importantly, can explain their decisions to 
human investigators responsible for final assessments [1]. 

The key lies in analyzing behavioral sequences rather than isolated events. Consider 
personal spending habits: coffee in the morning, lunch near the office, groceries on 
weekends-patterns emerge naturally. Fraudsters can simulate individual transactions, 
even convincing ones, but replicating the nuanced consistency of weeks or months of 
genuine behavior is nearly impossible. Our system leverages this insight by processing 
transaction histories as temporal sequences, employing modified recurrent network 
architectures that capture not only what was purchased, but also when, where, and in 
what order. The temporal gaps between transactions are equally informative-legitimate 
users tend to exhibit stable inter-purchase intervals, while fraudulent behavior often 
reveals irregular or hesitant timing patterns. 

However, technical sophistication alone is insufficient if the system cannot perform 
at operational scale. Financial institutions handle thousands of transactions per second, 
and even an additional 10 milliseconds of latency can cause cascading failures in 
production. From the outset, our design prioritized efficiency. We implemented 
hierarchical filtering that quickly processes clearly legitimate transactions in about 3 
milliseconds, while more suspicious cases undergo deeper analysis averaging 47 
milliseconds. Only the highest-risk transactions trigger a full neural evaluation, requiring 
approximately 156 milliseconds [2]. This multi-tiered design supports throughput of up 
to 12,000 transactions per second (95% CI: [11,400, 12,600]) under sustained load while 
preserving accuracy and stability. 

Explainability presented a further challenge. Regulatory frameworks demand 
transparency, and customers have a right to understand why their transactions are 
declined. Yet generating comprehensive explanations can increase computational cost by 
three to four times, making real-time performance impractical. Our solution introduces 
selective explainability: detailed, gradient-based attributions are generated only for the 
roughly 5% of transactions identified as high-risk, while routine transactions receive 
simplified rule-based summaries. This approach maintains compliance and user trust 
without compromising throughput-a balance achieved after extensive real-world testing 
and several production-stage refinements across partner institutions. 

2. Related Work 
2.1. Evolution of Sequential Behavior Modeling 

Sequential modeling for fraud detection has followed an unusual trajectory. It began 
with manually written rules crafted by domain experts who understood fraud behavior 
but had little exposure to machine learning. These rule-based systems eventually gave 
way to classical statistical models that worked well-until fraudsters adapted. The field 
then shifted toward deep learning, which promised superior accuracy but often 
introduced major operational challenges in real-world environments [3]. 

A major turning point came when researchers introduced the idea of behavioral 
sequence embeddings. Their approach treated transaction histories as linguistic structures: 
transactions became "words," cards acted as "documents," and spending behavior formed 
a kind of grammar. By compressing months of raw transaction data into compact 256-
dimensional vectors, they achieved significant accuracy improvements-nearly 89% in 
benchmark tests. The core innovation was an interval-aware GRU architecture that 



Journal of Sustainability, Policy, and Practice  Vol. 1, No. 4 (2025) 
 

 132  

integrated a time-gap term into the reset gate, represented as f_t = σ (W_f · [h_{t-1}, x_t, 
Δt] + b_f). This Δt component captured the intervals between purchases, revealing that 
fraudsters pause between transactions differently from legitimate users-a small but 
crucial behavioral cue. 

Another key contribution came from the introduction of bidirectional sequence 
models, which considered not only past-to-future dependencies but also future-to-past 
influences. This bidirectional processing allowed the system to contextualize earlier 
transactions based on subsequent behavior, improving the model's ability to detect 
coordinated fraudulent activity. However, such models demanded immense 
computational resources, often stretching system memory limits in practice [4]. 

A further creative leap involved converting transaction sequences into image-like 
representations using Markov Transition Fields. In this approach, the matrix M_ij = W_ 
{q_i, q_j} encoded behavioral transition probabilities as pixel intensities. Convolutional 
neural networks-originally designed for image recognition-were then repurposed to 
analyze these visualized patterns. Surprisingly, this unconventional fusion of computer 
vision and fraud analytics yielded accuracy rates around 87%, proving that spatial 
encodings of temporal dynamics could uncover hidden behavioral structures. 

2.2. Self-Supervised and Multi-Modal Advances 
The impact of self-supervised learning arrived later in fraud detection but proved 

transformative. One pioneering study demonstrated that models trained on unlabeled 
transaction data could outperform supervised systems. By exposing neural networks to 
millions of legitimate transaction sequences without explicit fraud labels, the models 
learned the patterns of normal behavior so thoroughly that anomalies stood out naturally. 
Accuracy exceeded 91%, surpassing traditional supervised baselines by a significant 
margin. Replicating such results required extensive computational effort but confirmed 
the power of unsupervised pre-training for anomaly detection [5]. 

Building on this, researchers began integrating multiple data sources-clickstreams, 
session logs, and device fingerprints-into unified low-dimensional embeddings. These 
compact 147-dimensional representations preserved essential behavioral cues while 
reducing redundancy. In some cases, most features could be compressed to fewer than 
ten dimensions without measurable loss in performance. The underlying principle was 
straightforward: high dimensionality is often unnecessary when behavior follows 
consistent structural patterns. Implementation details, particularly normalization and 
temporal alignment steps, were critical to replicating these strong results in practice. 

2.3. Computational Efficiency and Real-Time Processing 
Production-scale fraud detection systems must balance accuracy with efficiency. One 

notable optimization reformulated static transaction graphs into temporal edge-based 
structures, achieving a fifty-fold speedup while retaining approximately 88% accuracy. 
This improvement illustrated how thoughtful structural redesigns could enhance both 
performance and scalability without major sacrifices in predictive quality [6]. 

Explainability, however, remains a persistent challenge. Gradient-based 
interpretability frameworks can make model decisions transparent but often slow 
inference by a factor of three or more. Whether this trade-off is acceptable depends on 
regulatory expectations and operational priorities. 

At the infrastructure level, microservice-based architectures have demonstrated 
scalability up to 45,000 transactions per second, albeit with simplified models that trade 
complexity for speed. Other systems maintain weekly behavioral windows while 
sustaining throughput of around 8,000 events per second through efficient sliding-
window mechanisms. Some optimized implementations have achieved latencies as low 
as 2.3 milliseconds, while others balance richer modeling capacity with response times 
near 85 milliseconds. These results collectively highlight the central engineering dilemma 
in real-time fraud detection: achieving high interpretability and robustness without 
compromising the speed essential for production deployment [7]. 
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3. Methodology 
3.1. Behavioral Sequence Representation Framework 
3.1.1. Architectural Design Philosophy 

Transaction data arrives in a complex mix of numerical values, categorical identifiers, 
timestamps, and geographical coordinates-a challenge for any modeling system. 
Conventional methods either concatenate all features, leading to excessive dimensionality, 
or process them separately, losing cross-feature interactions. Both strategies fail to achieve 
scalable, real-world performance. 

Our framework draws inspiration from linguistics, where conversations involve 
multiple participants, topics, and temporal flows. Similarly, transaction sequences 
combine diverse information streams that must be interpreted together. We decompose 
this complexity hierarchically: numerical features are handled in one stream, categorical 
variables in another, and temporal features in a third. These streams merge only after 
individual optimization, minimizing early-stage interference and improving 
generalization [8]. 

The model dynamically adjusts to varying sequence lengths-an essential feature 
discovered through extensive field testing. Fixed-length encoders failed when deployed 
across banks with widely differing customer behaviors. Some users made only a few 
purchases per month, while others exceeded several hundred. Our adaptive pooling 
mechanism ensures consistent 256-dimensional outputs regardless of input length by 
applying learned attention weights that highlight the most informative transactions while 
down-weighting padding. 

Every design choice prioritized speed without sacrificing too much accuracy. Early 
prototypes achieved 97% accuracy but required nearly 800 milliseconds per transaction, 
making them impractical. Through careful engineering, we systematically optimized 
performance: removing batch normalization saved 12 ms, replacing LSTM units with 
GRUs saved 23 ms, and halving hidden dimensions from 256 to 128 saved 18 ms. Each 
modification reduced complexity, resulting in a model fast enough for real-world 
deployment while maintaining competitive accuracy. 

3.1.2. Mathematical Formulation and Implementation 
While the equations appear simple, their implementation required months of 

refinement. Our modified GRU cells incorporate temporal gaps directly into gate 
computations: 

Reset: r (i, k) = σ(W_r[x'(i,k); Δt (i,k)] + U_r s (i-1, k) + b_r) 
Update: z (i, k) = σ (W_z [x'(i, k); Δt (i, k)] + U_z s (i-1, k) + b_z) 
Candidate: s'(i, k) = tanh(W[x'(i,k); Δt (i, k)] + r (i, k) ⊙ U s (i-1, k) + b) 
Hidden: s (i, k) = z(i,k) ⊙ s (i-1, k) + (1 – z (i, k)) ⊙ s'(i,k) 
In this formulation, the concatenation [x'(i, k); Δt (i, k)] integrates temporal gaps 

directly into feature inputs rather than processing them separately. Ablation studies 
confirmed that this direct integration improved accuracy by 3.2% with only 2 milliseconds 
of added latency. 

Extensive experiments determined that a two-layer GRU with 128 hidden units 
provided the best balance between performance and efficiency. Adding more layers 
yielded marginal accuracy gains but caused latency and gradient instability. The final 
configuration encodes 100-transaction sequences in approximately 31 milliseconds, 
achieving both responsiveness and expressive modeling capacity [9]. 

3.1.3. Feature Engineering Pipeline 
Transaction data holds hidden behavioral narratives when features are properly 

constructed. We engineered multiple feature categories to reveal these dynamics: 
transaction velocity, merchant pattern transitions, and temporal rhythms. Velocity 
features capture urgency patterns that fraudsters struggle to mimic. Merchant affinity 
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features detect sudden deviations from habitual categories, and temporal features reveal 
timing anomalies such as unusual purchase hours. 

As shown in Table 1, twenty-three velocity-related features improved accuracy by 
4.3%, while merchant and temporal features contributed 3.7% and 2.9%, respectively. 
Additional categories-network and device features-remain in partial deployment due to 
higher computational cost. 

Table 1. Behavioral Feature Engineering Pipeline Performance. 

Feature 
Category 

Dimensionalit
y 

Processing 
Time (ms) 

Accuracy 
Contribution 

Implementati
on Status 

Transaction 
Velocity 23 1.8 +4.3% Deployed 

Merchant 
Patterns 

18 2.4 +3.7% Deployed 

Temporal 
Dynamics 

15 1.2 +2.9% Deployed 

Network 
Features 12 8.7 +1.8% Experimental 

Device 
Fingerprints 9 3.1 +1.2% 

Limited 
Deployment 

Total/Average 77 17.2 +14.9% Mixed 
Hierarchical pooling combines multiple temporal resolutions through an 

aggregation function Ψ, defined as Z = Ψ(φ_hour(X), φ_day(X)). Hour-level aggregation 
captures fine-grained behavior, while daily aggregation reflects broader spending 
patterns. Monthly aggregation provided slight accuracy gains but introduced a 180% 
computational overhead, making it impractical for deployment. 

3.2. Sequential Risk Scoring Algorithm 
3.2.1. Hierarchical Filtering Architecture 

Fraud risk assessment operates like medical triage-urgent cases require immediate 
attention, while routine ones pass automatically. Our system employs three progressive 
filtering layers. 

Layer 1 performs statistical screening using threshold-based rules that process 
transactions in roughly 3 milliseconds, allowing 78% of legitimate traffic to pass instantly. 
Layer 2 applies gradient boosting via LightGBM, balancing speed and accuracy effectively; 
it achieves 93.7% accuracy with an average latency of 47 milliseconds. Layer 3 uses neural 
networks for the remaining high-risk 2% of transactions, requiring 156 milliseconds per 
decision but ensuring precision in critical cases [10]. 

3.2.2. Ensemble Scoring Formulation 
To integrate insights from diverse models, we use an ensemble strategy governed by 

a weighted voting scheme: 
S(z) = σ(0.45f_lgb(z) + 0.35f_xgb(z) + 0.20f_rf(z)) 
LightGBM contributes the largest share due to its strong performance and 23-

millisecond inference time. XGBoost and Random Forest provide complementary 
perspectives, enhancing robustness. Weights were optimized empirically through grid 
search, favoring performance consistency over theoretical symmetry. 

3.2.3. Specialized Fraud Detectors 
Different fraud types exhibit distinct behavioral signatures, requiring targeted 

detection modules. Account takeovers appear as abrupt behavioral changes, effectively 
captured by recurrent models with 87.3% precision. Synthetic identity fraud manifests in 
relational patterns best handled by graph-based features, yielding 84.7% precision. 
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Transaction manipulation blends human and automated elements; hybrid rule-learning 
systems detect it with 91.2% precision in 34 milliseconds. 

As shown in Figure 1, the hierarchical risk scoring framework balances precision 
with latency across fraud categories. 

 
Figure 1. Hierarchical Risk Scoring Architecture with Latency Measurements. 

Calibration ensures that risk scores correspond to true probabilities. Isotonic 
regression adjusts model outputs by minimizing the weighted squared error: 

P_calibrated = argmin_m Σ_i w_i (y_i - m(f_i)) ² 
This process reduces the expected calibration error from 0.067 to 0.031, improving 

reliability by 54% at an additional cost of only 2.3 milliseconds per transaction (As shown 
in Table 2 and Table 3). 

Table 2. Model Performance Across Fraud Categories (Production Metrics). 

Fraud 
Type Precision Recall 

F1-score-
Score AUROC 

Median 
Latency 

(ms) 

Daily 
Volume 

Account 
Takeover 

0.873 0.812 0.841 0.934 67.3 142K 

Card-
Not-

Present 
0.912 0.867 0.889 0.958 34.2 2.8M 

Transacti
on 

Manipula
tion 

0.891 0.834 0.862 0.947 41.7 387K 

Merchant 
Fraud 0.856 0.798 0.826 0.921 52.8 93K 

Synthetic 
Identity 0.847 0.823 0.835 0.915 89.2 67K 

Ensemble 
Combine

d 
0.937 0.892 0.914 0.968 47.3 3.4M 
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Table 3. Core Performance Metrics for Imbalanced Classification. 

Metric Value 95% CI Baseline Comparison 

AUPRC 0.876 [0.871, 0.881] +0.23 vs XGBoost 

Recall@1%FPR 0.834 [0.821, 0.847] +0.18 vs XGBoost 

Recall@0.1%FPR 0.712 [0.695, 0.729] +0.15 vs XGBoost 

AUROC 0.968 [0.965, 0.971] +0.02 vs XGBoost 

Accuracy 0.937 [0.934, 0.940] +0.019 vs XGBoost 

3.3. Explainability Mechanisms 
Interpretability is not merely a compliance requirement-it is essential for 

collaboration between human analysts and automated systems. Our selective 
explainability framework generates detailed explanations only for high-risk transactions, 
maintaining transparency without burdening system performance. 

Gradient-based attribution identifies feature importance efficiently. Full integrated 
gradient computation proved too slow, so we adopted a reduced interpolation approach: 

A(z) = (z - z_baseline) × Σ_{i=1}^{10} ∇S(z_baseline + i/10 × (z - z_baseline)) / 10 
This approximation retains 89% correlation with the full computation while 

improving speed by a factor of five. 
Attention mechanisms further highlight temporal focus. Single-head attention was 

chosen over multi-head variants, trading a minor reduction in interpretability for a 28-
millisecond latency reduction. Human evaluation across 12 analysts confirmed that the 
simplified attention maintained sufficient clarity for operational use. 

Counterfactual explanations identify minimal feature perturbations that would 
change a decision outcome, limited to the top three most influential features to maintain 
real-time performance: 

minimize ||x'_top3 - x_top3||₂ subject to S(φ(x')) < 0.3 
As shown in Table 4, our production configuration balances interpretability with 

speed. 

Table 4. Explainability Method Performance Comparison (Production Configuration). 

Method 
Computation 

Time (ms) 
Faithfulness 

Score 

User 
Comprehensio

n 

Deployment 
Status 

Integrated 
Gradients 
(Reduced) 

12 0.847 0.68 Production 

SHAP Values 187 0.912 0.74 Offline Only 
Attention 
Weights 3 0.723 0.81 Production 

LIME 412 0.834 0.79 Disabled 
Top-3 

Counterfactual
s 

47 0.812 0.87 
Limited 

Production 

Feature 
Importance 

(Tree) 
8 0.691 0.72 Production 
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Permutation 
Importance 

156 0.889 0.65 Experimental 

Finally, human-readable explanations are generated through structured templates 
rather than free-form neural text generation. Template-based messages cover 92% of cases 
while maintaining sub-10-millisecond generation times. For example: 

"Transaction flagged due to unusual velocity (23 transactions in 3 hours, typical: 4-7) 
and merchant category deviation (electronics, historical: groceries)." 

This rule-based narrative system delivers sufficient clarity for analysts and customers 
alike without exceeding latency budgets [11]. 

4. Experimental Evaluation 
4.1. Dataset Characteristics and Experimental Setup 

Empirical validation requires a rigorous methodology applied to realistic datasets. 
The IEEE-CIS Fraud Detection dataset, containing 590,540 transactions and 394 features, 
represents a modern benchmark for real-world fraud detection challenges. Fraud 
prevalence stands at 3.5%, corresponding to 20,663 fraudulent transactions among 
legitimate ones. The dataset includes diverse feature types-identity markers, transactional 
attributes, and engineered signals. To ensure computational efficiency, dimensionality 
was reduced to 147 features while preserving 97% of discriminative capacity. For 
transparency, results on the public IEEE-CIS dataset are reported, while production 
telemetry (post-deployment KPIs) is summarized separately under contractual and 
privacy constraints. 

Preprocessing addresses practical issues inherent to financial data. Missing values 
are substantial-38% for categorical variables and 27% for numerical ones. Mode 
imputation is applied to categorical attributes, while medians are used for numeric fields. 
More sophisticated imputation approaches yielded only marginal gains-about 0.3% 
improvement in accuracy-while tripling processing time. Class imbalance poses 
additional challenges: the raw 28:1 legitimate-to-fraud ratio was adjusted to 10:1 using 
random under sampling. Although SMOTE variants offered theoretical advantages, their 
fourfold increase in training time made them impractical for production-scale 
applications [12]. 

As shown in Figure 2, temporal evolution patterns of fraudulent transactions 
demonstrate non-stationary behavior, justifying time-aware splitting. 
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Figure 2. Temporal Fraud Pattern Evolution Across Dataset. 

Temporal consistency is preserved across experimental stages. The training set spans 
days 1-213 (70% of the data), the validation set covers days 214-274 (15%), and the test set 
comprises days 275-334 (15%). Random splitting inflated apparent accuracy by 4.7%, 
while temporal partitioning provided a realistic measure of deployment performance. 
Hardware configuration reflected institutional limits: a single NVIDIA V100 GPU with 
128 GB RAM. Although higher configurations might yield better performance, 
experimental design favored realism over optimization. Training proceeded for up to 24 
hours, capped at 100 epochs with early stopping and batch size 256, determined by 
memory constraints. 

As shown in Table 5, dataset processing and training metrics highlight the 
computational profile of each stage. 

Table 5. Dataset Processing and Training Metrics. 

Dataset 
Split 

Transaction
s 

Fraud Rate 
(%) 

Features 
Used 

Processing 
Time 

Memory 
Usage 

Training Set 413,378 3.48 147 18.3 hours 24.7 GB 
Validation 

Set 88,581 3.52 147 2.1 hours 8.3 GB 

Test Set 88,581 3.54 147 1.7 hours 8.3 GB 
Full 

Pipeline 
590,540 3.50 147 22.1 hours 41.3 GB 

Data 
Preprocessi

ng 
     

Missing 
Value 

Imputation 
590,540 - 394→147 3.4 hours 12.1 GB 

Feature 
Engineering 

590,540 - 147 4.7 hours 18.6 GB 
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Class 
Balancing 

413,378 3.48→9.1 147 1.2 hours 8.3 GB 

4.1.1. Production Environment Specifications 
Production evaluations were performed on AWS EC2 p3.2xlarge instances (Intel 

Xeon E5-2686 v4, 8 vCPUs, 61 GB RAM, Tesla V100 GPU) across three financial 
institutions during a 90-day observation window (July-September 2024). Transaction 
throughput was measured using controlled load testing via Apache JMeter, scaling from 
1,000 to 15,000 transactions per second over 30 minutes. Latency metrics represent 95th 
percentile values calculated from 10 million transactions, with confidence intervals 
estimated via bootstrap sampling (n=1000). 

A/B testing compared the proposed system against legacy rule-based engines using 
matched customer segments (treatment: n=847,293 transactions; control: n=839,157 
transactions). Statistical significance was verified using two-proportion z-tests at α = 0.05. 

4.2. Performance Analysis and Ablation Studies 
Empirical findings validate key architectural choices while revealing practical trade-

offs. The system achieved an AUPRC of 0.876, AUROC of 0.968, and Recall@1%FPR of 
0.834, accompanied by 93.7% accuracy. Processing throughput reached 12,000 
transactions per second, and median latency was 47.3 ms. These results reflect deliberate 
engineering compromises rather than theoretical upper bounds. 

Baseline comparisons contextualize improvements. Logistic regression achieved 78.4% 
accuracy in 2 ms, Random Forests reached 86.3% in 18 ms, standard GRUs achieved 89.7% 
in 67 ms, and standalone XGBoost delivered 91.8% in 31 ms. Our architecture's 1.9% 
improvement over XGBoost may appear incremental but translates to thousands of 
prevented fraud cases daily at production scale. 

As shown in Figure 3, the performance-latency relationship reveals how design 
trade-offs optimize throughput under real-time constraints. 

 
Figure 3. Performance-Latency Trade-off Analysis. 

Ablation experiments further quantify each module's contribution. Behavioral 
embeddings enhanced accuracy by 4.8% at the cost of 14 ms. Attention mechanisms added 
4.4% precision with 14 ms latency. Hierarchical pooling improved recall by 3.7% for an 8 
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ms increase. Calibration, despite its modest 2 ms overhead, reduced reliability error by 
54%, demonstrating an excellent cost-benefit ratio. 

Systematic error analysis uncovered recurring challenges. International travelers 
exhibited higher false positive rates (8.7%) due to contextual variability, while bulk 
purchasers faced 6.3% misclassification rates linked to behavioral diversity. Low-value 
fraud (under $50) remained difficult to detect-accounting for 72% of undetected cases. 
Temporal performance degradation reached 2.8% over 60 days, motivating future 
integration of online learning. 

As shown in Table 6, ablation outcomes demonstrate how each system component 
affects operational and financial metrics. 

Table 6. Ablation Study Results with Business Impact. 

Configurati
on 

Accuracy 
Change 

Latency 
Change 

Daily 
Fraud 

Caught 

Daily False 
Positives 

Annual 
Cost 

Impact 
Complete 

Framework Baseline Baseline 2,847 4,123 Baseline 

Without 
Sequence 

Embedding 
-4.8% -14ms 2,583 (-264) 5,234 

+1,111 -$3.2M 

Without 
Attention 

-2.1% -8ms 2,741 (-106) 4,567 (+444) -$1.4M 

Without 
Hierarchical 

Pooling 
-3.2% -11ms 2,689 (-158) 4,891 (+768) -$2.1M 

Without 
Calibration -0.4% -2ms 2,823 (-24) 6,234 

+2,111 -$0.8M 

Without 
Ensemble 

-1.9% -24ms 2,716 (-131) 4,456 (+333) -$1.6M 

Without 
Pre-

processing 
-6.7% -6ms 2,447 (-400) 7,123 

+3,000 -$4.8M 

Simplified 
Model -8.3% -31ms 2,389 (-458) 8,567 

+4,444 -$5.9M 

Production deployment validated the laboratory findings, though with real-world 
adjustments. Over three months, pilots processing 50,000 transactions daily achieved 92.4% 
accuracy-1.3% below test results. Partial degradation stemmed from data drift and 
operational constraints. System availability averaged 99.7%, with two major outages 
traced to memory leaks during feature computation. Notably, customer satisfaction 
improved, with complaint rates declining by 23% relative to prior rule-based systems. 

5. Conclusions 
After eighteen months of development, three production deployments, and extensive 

debugging, we conclude that building effective real-world fraud detection systems 
requires prioritizing practicality over theoretical elegance. Our framework identifies 93.7% 
of fraudulent transactions with a latency of 47.3 ms-figures that may seem modest but 
mark the boundary between an operational solution and a purely academic experiment. 

The core contribution lies in the orchestration of multiple components rather than 
any single innovation. The modified GRU with temporal gap awareness effectively 
captures behavioral evolution, while hierarchical filtering separates straightforward from 
complex decisions, minimizing unnecessary computation. Selective explainability 
generates model interpretations only when essential, preserving speed without 
compromising transparency. Each element fulfills a specific role; collectively, they sustain 
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real-time performance across three partner banks processing approximately 3.4 million 
daily transactions. 

Several valuable lessons emerged from bridging research and deployment. Feature 
engineering that improved accuracy by 2% during testing caused severe memory leaks in 
production-weeks were spent locating pointer arithmetic errors in the C++ 
implementation. The elegant attention mechanism proposed in early designs was 
ultimately removed after introducing significant latency during high-load periods. While 
theory favored deep architectures, practice dictated a two-layer design for reliability. 
These pragmatic adjustments enabled real deployment, whereas theoretically superior 
models often remain confined to research papers. 

Nonetheless, limitations persist. Model performance declines by about 2.8% after 
sixty days, indicating that fraud behavior evolves faster than our retraining cycle. 
International travelers produce false positives at an 8.7% rate, showing that the behavioral 
baselines are still too rigid. Moreover, small-value fraud under $50 escapes detection 72% 
of the time; although threshold tuning continues, deeper architectural revisions may be 
required. 

Future improvements should focus on online learning-continuously updating 
models instead of relying solely on batch retraining-context-aware baselines that 
distinguish legitimate travel patterns from fraud, and multi-scale detection networks 
optimized for both micro and macro fraudulent behaviors. Federated learning across 
institutions offers another promising direction, allowing shared pattern discovery 
without exposing sensitive customer data. Implementation of this approach has already 
begun with five participating banks. 

The broader implications of this work extend well beyond financial services. Any 
field that requires high-speed, high-stakes decision-making with human oversight-such 
as medical diagnostics, autonomous systems, or cybersecurity-faces the same trade-offs 
among accuracy, interpretability, and computational efficiency. Our results demonstrate 
that practical, transparent solutions are achievable, even if they demand compromises and 
hands-on engineering rather than theoretical perfection. Perfect fraud detection may 
remain unattainable, but effective, deployable detection prevents real financial losses 
today-and that pragmatic success ultimately matters most. 

Acknowledgments: Three banks trusted us with production data despite competitive risks-that 
leap of faith made this research possible. Their fraud teams spent countless hours explaining why 
our "brilliant" ideas would fail in practice, saving us from embarrassing deployment disasters. 
Graduate students debugged code at 3 AM, found patterns our metrics missed, and maintained 
sanity during endless hyperparameter searches. Reviewers forced us to admit our initial claims 
were overblown. The operations team prevented catastrophe by catching memory leaks during 
stress testing. Industry collaborators revealed that half our assumptions about production 
constraints were wrong. This work succeeded because of their brutal honesty about what actually 
matters versus what sounds impressive in papers. 
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