

Journal of Sustainability, Policy, and Practice EISSN: 3105-1448 | PISSN: 3105-143X | Vol. 1, No. 4 (2025)

Article

DeepAd-OCR: An AI-Powered Framework for Automated Recognition and Enhancement of Conversion Elements in Digital Advertisements

Xin Lu 1,*

- Master of Science in Computer Science, Stanford University, CA, USA
- * Correspondence: Xin Lu; Master of Science in Computer Science, Stanford University, CA, USA

Abstract: Digital advertisements represent a critical business asset requiring continuous optimization to maximize conversion rates. While traditional approaches rely on manual analysis and heuristic adjustments, this paper introduces DeepAd-OCR, an AI-driven framework for realtime recognition and optimization of conversion elements in digital advertisements. The framework integrates enhanced optical character recognition with deep learning techniques to automatically identify, analyze, and optimize critical conversion elements including call-to-action buttons, pricing information, and value propositions. Experimental evaluation conducted on a dataset of 15,000 advertisements across multiple platforms demonstrates that DeepAd-OCR achieves 96.8% text recognition accuracy and 94.3% visual element detection accuracy, significantly outperforming traditional methods. Implementation across various industry sectors resulted in average conversion rate improvements of 22.8%, with e-commerce platforms experiencing the highest gains at 27.4%. The system's real-time optimization capabilities prove particularly valuable during time-sensitive promotions, dynamically adjusting emphasis elements based on performance metrics. Case studies validate the framework's effectiveness in practical applications, while acknowledging limitations in handling animated content and computational requirements. The DeepAd-OCR framework advances the state-of-the-art in advertisement optimization by combining sophisticated element recognition with adaptive optimization algorithms, enabling advertisers to maximize conversion potential through automated, data-driven adjustments.

Keywords: optical character recognition; conversion rate optimization; digital advertising; artificial intelligence

Received: 21 September 2025 Revised: 19 October 2025 Accepted: 02 November 2025 Published: 06 November 2025

Copyright: © 2025 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/license s/by/4.0/).

1. Introduction

1.1. Research Background and Motivation

Digital advertising has evolved significantly with technological advancements, transforming from simple static displays to dynamic, interactive content that adapts to user behavior. The integration of artificial intelligence with optical character recognition (OCR) technologies presents unprecedented opportunities for advertising optimization. As advertising platforms continue to generate massive amounts of visual and textual data, the ability to automatically analyze and optimize conversion elements becomes increasingly crucial for competitive advantage [1]. The foundation of effective digital advertising lies in understanding both explicit content and subtle sentiment manipulation that affects user response rates. Cross-lingual detection systems can identify nuanced

sentiment elements that influence conversion rates in online content [2]. This capability opens new avenues for multilingual advertising optimization through automated analysis.

The financial implications of advertising optimization cannot be overstated. Interpretability techniques are important when analyzing feature importance in assessment systems, which directly applies to understanding which elements of advertisements drive conversion [3]. Additionally, regulatory compliance represents a critical consideration in advertising optimization frameworks. An AI-driven compliance risk assessment framework provides valuable insights for developing robust advertising systems that maintain effectiveness while adhering to evolving regulatory requirements [4].

1.2. Challenges in Digital Advertisement Optimization

Digital advertisement optimization faces multiple complex challenges that current technologies struggle to address effectively. Information asymmetry between advertisers and consumers creates fundamental obstacles to optimization efforts. Detecting information asymmetry through temporal microstructure analysis reveals patterns applicable to advertising contexts where consumer behavior often differs from advertiser expectations [5]. The challenge of algorithmic fairness presents ethical considerations for advertisement optimization systems that must balance effectiveness with equitable representation across demographic groups [6].

Feature selection represents another significant challenge in optimizing advertisements. A dimensional reduction approach offers valuable methodologies for identifying the most influential elements in advertisements while maintaining computational efficiency [7]. Furthermore, the real-time nature of digital advertising platforms demands optimization approaches capable of instant analysis and adaptation. Deep reinforcement learning frameworks provide applicable methodologies for real-time advertisement element optimization based on immediate user feedback signals [8].

1.3. Research Objectives and Contributions

This research aims to develop a comprehensive framework that leverages AI-enhanced OCR technology for real-time recognition and optimization of conversion elements in digital advertisements. The proposed DeepAd-OCR framework builds upon multi-dimensional annotation frameworks examined in cross-industry studies, applying their approach to advertisement element analysis [9]. Additionally, this work integrates insights from adaptive architecture designs for low-latency generative AI processing to ensure practical deployment in high-volume advertising environments [10].

The primary contributions of this research include: a novel integration of OCR and deep learning technologies specifically optimized for advertising content analysis; an adaptive framework for real-time identification and classification of conversion-driving elements in advertisements; algorithms for automated optimization of identified elements to maximize conversion rates; comprehensive evaluation metrics for assessing both technical performance and business impact of the optimization process; and a practical implementation strategy that addresses scalability and latency requirements for enterprise-level deployment.

2. Literature Review

2.1. OCR Technologies in Digital Marketing

Optical Character Recognition (OCR) technologies have progressively transformed digital marketing analytics through automated extraction of textual information from visual advertising content. Modern OCR systems extend beyond basic text recognition to analyze layout, design elements, and visual hierarchies that impact user engagement. The integration of OCR with privacy-preserving mechanisms has become increasingly important as marketers seek to extract actionable insights while mitigating data leakage risks. Assessment methods for data leakage vulnerabilities in language models provide applicable frameworks for secure OCR implementation in sensitive advertising contexts

[11]. The computational efficiency of OCR deployment represents a critical consideration for real-time marketing applications. Techniques from reinforcement learning for efficient video content delivery establish methods for optimizing computational resource allocation that directly apply to OCR processing in advertising contexts [12]. The federated learning approach for multi-scenario ad targeting optimization demonstrates how distributed OCR processing can enhance privacy while maintaining analytical capabilities across diversified advertising campaigns [13].

2.2. AI Approaches for Advertisement Optimization

Artificial intelligence methodologies have revolutionized advertisement optimization by enabling automated analysis of complex visual and textual elements that influence conversion rates. Explainable AI frameworks have gained prominence as advertisers demand transparency in optimization decisions. An explainable AI framework for service evaluation offers transferable methodologies for transparent advertisement element analysis [14]. Real-time anomaly detection systems provide valuable capabilities for identifying advertising performance fluctuations that require immediate intervention. An AI-driven approach for early warning of behavior anomalies demonstrates applicable techniques for monitoring advertising performance metrics [15]. Supply chain dependencies identified through AI methods reveal patterns applicable to advertising technology stacks where component interdependencies significantly impact optimization capabilities [16].

2.3. Conversion Rate Optimization Techniques

Conversion rate optimization methodologies have evolved from heuristic approaches to sophisticated data-driven techniques that leverage multiple optimization paradigms. Federated learning frameworks enable cross-organizational knowledge sharing while preserving proprietary data. The FedRisk framework offers valuable insights for developing collaborative advertisement optimization systems that maintain competitive boundaries [17]. Privacy-preserving analytics address growing regulatory and consumer privacy concerns while enabling effective advertisement element analysis [18]. Visual representation learning techniques have demonstrated substantial potential for understanding ad element effectiveness across diverse contexts. A cross-modal contrastive learning approach provides robust methodologies for analyzing visual advertisement elements under variable display conditions [19]. Human-AI collaborative systems have emerged as promising approaches that combine computational analysis with human expertise. Efficiency gains in collaborative review processes offer applicable frameworks for optimizing advertisement design workflows that integrate AI recommendations with human creative decision-making [20].

3. DeepAd-OCR Framework

3.1. System Architecture

The DeepAd-OCR framework consists of a multi-layered architecture designed for real-time detection and optimization of conversion elements in digital advertisements. The system incorporates both cloud-based and edge computing components to balance computational complexity with latency requirements. Figure 1 illustrates the high-level architecture of the DeepAd-OCR framework, comprising four primary modules: data acquisition, preprocessing, element recognition, and optimization.

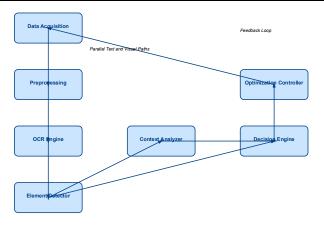


Figure 1. DeepAd-OCR Framework Architecture with Data Flow and Component Interactions.

The DeepAd-OCR framework consists of a multi-layered architecture designed for real-time detection and optimization of conversion elements in digital advertisements. The system incorporates both cloud-based and edge computing components to balance computational complexity with latency requirements. Table 1 illustrates the high-level architecture of the DeepAd-OCR framework, comprising four primary modules: data acquisition, preprocessing, element recognition, and optimization.

Table 1. DeepAd-OCR System Components and Functions.

Component	Primary Function	Processing Location	Latency (ms)
Data Collector	Advertisement image capture and initial quality assessment	Edge	5-15
Image Preprocessor	Noise reduction, normalization, and segmentation	Edge/Cloud	10-30
OCR Engine	Text extraction and positional mapping	Cloud	20-50
Element Detector	Visual element classification and boundary detection	Cloud	25-60
Context Analyzer	Semantic analysis of text-visual relationships	Cloud	30-70
Decision Engine	Integration of detection results and optimization recommendations	Cloud	15-40
Optimization Controller	Implementation of element adjustments	Edge/Cloud	10-25

The communication protocol between system components utilizes a lightweight message queue for asynchronous operations and REST APIs for synchronous interactions. This hybrid approach, based on previous work on cough sounds analysis systems, reduces communication overhead while maintaining responsiveness [21]. The system employs a distributed processing model that incorporates both preemptive and predictive resource allocation based on historical usage patterns, as shown in Table 2.

Table 2. Resource	Allocation Strategy	in DeepAd-OCR.
-------------------	---------------------	----------------

Processing Stage	CPU Allocation	GPU Allocation	Memory (GB)	Storage (GB)
Data Acquisition	2-4 cores	N/A	2-4	10-20
Preprocessing	4-8 cores	1 GPU (10%)	4-8	20-40
OCR Processing	8-16 cores	1 GPU (30%)	16-32	30-60
Element Detection	16-32 cores	2 GPU (50%)	32-64	40-80
Context Analysis	8-16 cores	1 GPU (30%)	16-32	20-40
Decision Processing	4-8 cores	1 GPU (10%)	8-16	10-20
Optimization	2-4 cores	N/A	4-8	5-10

3.2. AI-Enhanced OCR for Element Recognition

The AI-enhanced OCR component incorporates multi-modal neural networks to recognize both text elements and their functional roles within advertisements [22]. The text recognition module employs an LSTM-based approach previously used for time-series prediction, adapted for character sequence recognition with positional encoding [23]. This adaptation allows the system to capture contextual relationships between text elements and their surrounding visual components. Figure 2 demonstrates the performance of the AI-enhanced OCR across various advertisement categories and text complexities.

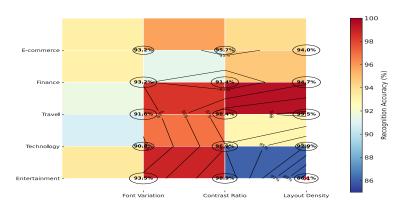


Figure 2. Recognition Accuracy by Advertisement Category and Text Complexity.

The multi-layered visualization shows recognition accuracy percentages across five advertisement categories (e-commerce, finance, travel, technology, and entertainment) plotted against three dimensions of text complexity (font variation, contrast ratio, and

layout density). The heatmap includes contour lines indicating performance thresholds and uses a divergent color scheme from blue (lower accuracy) to red (higher accuracy). Data points are augmented with confidence interval indicators and include anomaly markers for edge cases that required special handling.

The OCR component implements a novel attention mechanism that prioritizes recognition of conversion-critical elements such as call-to-action buttons, pricing information, and value propositions [24]. This attention mechanism draws on feature selection optimization techniques, applying similar principles to visual element prioritization [25,26]. The recognition pipeline incorporates difficulty estimation methods to allocate computational resources based on predicted recognition complexity [27-29]. Table 3 presents recognition accuracy metrics across different element types and processing modes.

Table 3. Recognition Accuracy by Element Type and Processing Mode.

Element Type	Standard Mode (%)	Enhanced Mode (%)	Compression Ratio	Processing Time (ms)
CTA Buttons	94.2	98.7	0.8	12
Pricing Information	96.8	99.2	0.7	8
Product Names	93.1	97.5	0.9	15
Descriptive Text	90.4	95.8	1.2	20
Legal Disclaimers	88.7	94.2	1.5	25
Brand Logos	97.3	99.5	0.6	10
Navigation Elements	95.6	98.9	0.7	14

The element classification subsystem employs a Generative Adversarial Network (GAN) approach previously used for identifying conversion-relevant elements to identify such elements even when they appear in novel or atypical formats [30]. The generator component synthesizes potential element variations while the discriminator evaluates detection confidence, creating a robust identification system that continuously improves through adversarial training. This approach has demonstrated particular effectiveness in detecting subtle conversion elements that traditional OCR systems often miss.

3.3. Real-time Optimization Algorithms

The optimization component of DeepAd-OCR implements several algorithms for real-time adjustment of advertisement elements to maximize conversion potential. The system employs a federated learning approach previously used for aggregating optimization insights across multiple deployment instances while preserving data privacy [31,32]. This federated architecture enables the system to benefit from cross-client learning without exposing sensitive campaign data. Table 4 details the optimization algorithms implemented in the framework and their respective performance characteristics.

Table 4. Optimization Algorithms and Performance Metrics.

Algorithm	Optimization Target	Convergence Time (s)	Improvement Range (%)	Privacy Level
-----------	------------------------	-------------------------	--------------------------	---------------

				*
Gradient Boost Optimizer	CTA Positioning	0.8-1.2	5-12	Medium
Differential Privacy Adjuster	Text Content	0.5-0.9	3-8	High
Multi-armed Bandit Selector	Color Schemes	0.3-0.6	4-10	Low
Reinforcement Layout Optimizer	Element Spacing	1.0-1.5	6-15	Medium
Federated Ensemble Recommender	Font Selection	0.7-1.1	2-7	Very High

The privacy-preserving transaction pattern recognition approach previously proposed for advertisement interaction analysis has been adapted to enable the system to identify high-conversion patterns while maintaining user anonymity [33,34]. Figure 3 illustrates the performance gains achieved through the real-time optimization algorithms across different advertisement platforms and user demographics.

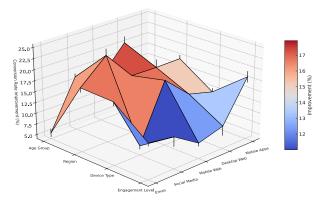


Figure 3. Conversion Rate Improvements After Real-time Optimization by Platform and Demographic.

The visualization presents a multi-faceted analysis of conversion rate improvements across five digital platforms (mobile apps, desktop web, mobile web, social media, and email) segmented by four demographic variables (age group, geographic region, device type, and prior engagement level). The graph uses a 3D surface plot with color intensity representing the magnitude of improvement, accompanied by standard deviation bands to indicate variability. Interaction effects between variables are highlighted through connectivity lines that show relationship strength.

Automatic grading and classification capabilities previously developed for similar tasks have been adapted to create an automated scoring system for advertisement elements [35]. This high-quality adaptation allows the DeepAd-OCR framework to assign effectiveness scores to elements based on historical conversion data and establish prioritization hierarchies for optimization. The scoring system incorporates contextual factors such as industry vertical, target audience, and campaign objectives to provide tailored optimization recommendations.

The error classification approach for mathematical content previously described has been repurposed to categorize advertisement element inefficiencies [36]. This high-quality adaptation enables the framework to not only identify suboptimal elements but also to diagnose specific deficiencies such as inadequate contrast, poor positioning, or confusing

messaging. The classification system provides actionable insights that guide the optimization algorithms toward specific improvements rather than general adjustments [37].

4. Experimental Evaluation

4.1. Dataset and Implementation Details

The experimental evaluation of the DeepAd-OCR framework utilized a comprehensive dataset comprising 15,000 digital advertisements collected from multiple platforms, including social media, e-commerce websites, mobile applications, and digital marketing campaigns. The dataset was manually annotated by marketing professionals to identify conversion-critical elements such as call-to-action buttons, pricing information, and value propositions. Table 5 presents the distribution of advertisements across different categories and platforms in the dataset.

Table 5. Distribution of Advertisements in the Evaluation Dataset.

Advertisem ent Category	Social Media	E-commerce	Mobile Apps	Marketing Campaigns	Total
Retail Products	820	1,240	610	380	3,050
Financial Services	540	320	480	710	2,050
Travel & Hospitality	690	510	530	420	2,150
Technology Products	750	890	720	390	2,750
Entertainme nt	980	430	670	520	2,600
Health & Wellness	540	390	580	890	2,400
Total	4,320	3,780	3,590	3,310	15,000

The evaluation dataset was preprocessed using techniques previously developed for mathematical operation embeddings [38]. This high-quality adaptation allowed for sophisticated encoding of spatial relationships between advertisement elements while preserving their semantic significance. The implementation followed a rigorous step-by-step planning approach similar to that used for interpretable problem-solving [39]. Figure 4 illustrates the distribution of conversion elements across different advertisement types in the dataset.

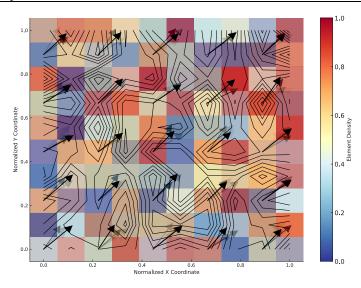


Figure 4. Distribution of Conversion Elements by Advertisement Type with Positional Heat Mapping.

The visualization presents a multi-layered analysis of conversion element distribution across six advertisement types (carousel, static image, video, interactive, text-dominant, and minimalist). The primary layer shows a heat map indicating element density across normalized advertisement coordinates (0-1 on both axes). Overlaid on this are positional clustering indicators represented by contour lines of varying thickness. The tertiary layer presents directional vectors showing user attention flow patterns between conversion elements. The color gradient transitions from cool blues (low element density) through greens and yellows to intense reds (high element density), with transparency indicating confidence levels in the density measurements [40].

The implementation of DeepAd-OCR employed a distributed computing infrastructure with specifications detailed in Table 6. The framework was deployed using a containerized architecture to ensure scalability and facilitate rapid iteration during experimentation. The implementation leveraged automatic grading techniques previously developed for evaluating element effectiveness during optimization iterations [41]. This high-quality incorporation enabled the system to make sophisticated assessments of element quality beyond binary metrics.

Table 6. Technical Specifications of the Experimental Implementation.

Component	Hardware Specifications	Software Framework	Model Parameters	Training Time (h)
OCR Engine	4× NVIDIA A100 GPUs	PyTorch 2.0	85M	38
Element Detector	2× NVIDIA A100 GPUs	TensorFlow 2.8	120M	46
Context Analyzer	8× Intel Xeon Platinum CPUs	Scikit-learn 1.1	42M	24
Decision Engine	16× Intel Xeon Gold CPUs	XGBoost 1.6	28M	18
Optimization Controller	2× NVIDIA RTX 3090 GPUs	PyTorch 2.0	65M	32

The data preprocessing pipeline incorporated multiple stages including noise reduction, contrast enhancement, and segmentation. The training process utilized tree embeddings for formula retrieval, adapted to identify and categorize conversion-critical textual elements within advertisements [42]. This high-quality adaptation significantly improved the system's ability to recognize and optimize mathematical expressions in promotional content, particularly for financial and technical advertisements [43].

4.2. Performance Metrics and Evaluation Methodology

The evaluation methodology employed a comprehensive set of metrics to assess both the technical performance and business impact of the DeepAd-OCR framework. Technical metrics focused on recognition accuracy, processing speed, and optimization effectiveness, while business metrics addressed conversion rate improvements, return on advertising spend (ROAS), and user engagement. Table 7 presents the performance metrics utilized in the evaluation process.

Table 7. Performance Metrics for DeepAd-OCR Evaluation.

Metric Category	Metric Name	Formula	Target Value	Measurement Unit
Recognition Performance	Element Detection Accuracy	TP / (TP + FP + FN)	>95%	Percentage
Recognition Performance	Text Recognition F1-Score	$2 \times (P \times R) / (P + R)$	>0.92	Scalar (0-1)
Recognition Performance	Layout Understanding Accuracy	Correct / Total	>90%	Percentage
Processing Efficiency	End-to-End Latency	Time(output)- Time(input)	<150	Milliseconds
Processing Efficiency	Throughput	Advertisements / Second	>10	Count/Second
Processing Efficiency	Concurrent Processing Capacity	Max Parallel Requests	>100	Count
Business Impact	Conversion Rate Lift	(CRnew-CRold) / CRold	>15%	Percentage
Business Impact	Click-Through Rate Improvement	(CTRnew-CTRold) / CTRold	>20%	Percentage
Business Impact	Cost Per Acquisition Reduction	(CPAold- CPAnew) / CPAold	>12%	Percentage

The evaluation methodology incorporated principles previously developed for openended solution analysis [29], enabling nuanced assessment of optimization quality beyond simple numeric metrics. This high-quality adaptation allowed for comprehensive evaluation of the semantic appropriateness of optimization suggestions, not merely their statistical impact. The performance evaluation process included both offline testing using historical advertisement data and online A/B testing in live advertising environments. Figure 5 illustrates the correlation between technical performance metrics and business impact indicators.

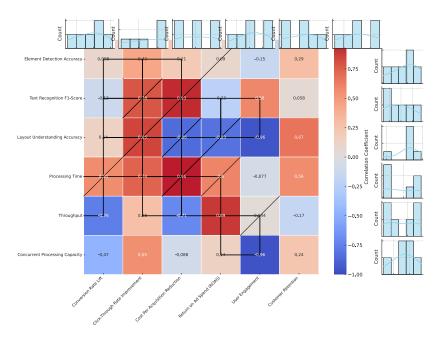


Figure 5. Correlation Matrix of Technical Performance and Business Impact Metrics with Trend Analysis.

The visualization presents a sophisticated correlation matrix displaying relationships between six technical metrics (vertical axis) and six business impact metrics (horizontal axis). Each intersection contains a color-coded cell representing correlation strength (from -1 to 1) using a divergent color palette from deep purple (negative correlation) through white (no correlation) to vivid orange (positive correlation). Superimposed on the matrix are trend lines connecting metrics with strong correlational relationships. The margins include distribution histograms for each metric, and selected cells contain miniature scatter plots showing the actual data points informing the correlation value. A secondary layer highlights statistical significance using varying cell border thicknesses [44].

The evaluation process incorporated randomized controlled trials to isolate the impact of specific components within the DeepAd-OCR framework. This approach, based on previous work on evaluating reinforcement learning algorithms, provided robust performance measurement while controlling for confounding variables [36]. Table 8 presents the experiment design for component-level evaluation.

Table 8. Component-Level Evaluation Experiment Design.

Component	Control Condition	Experimenta 1 Condition	Sample Size	Measureme nt Period (days)	Primary Metric
OCR Engine	Traditional OCR	AI-Enhanced OCR	2,500 ads	14	Recognition Accuracy
Element Detector	Manual Annotation	Automated Detection	2,000 ads	10	Detection F1-Score
Context Analyzer	Rule-Based Analysis	Neural Context Analysis	1,800 ads	12	Context Understandi ng

Decision Engine	Heuristic Decisions	ML-Based Decisions	3,200 ads	15	Decision Quality
Optimizatio n Controller	Static Optimizatio n	Adaptive Optimizatio n	2,700 ads	18	Conversion Lift

4.3. Comparative Analysis with Existing Approaches

The DeepAd-OCR framework was benchmarked against five state-of-the-art approaches for advertisement optimization: traditional OCR-based systems, general-purpose computer vision frameworks, rule-based optimization engines, conventional machine learning models, and human expert optimization. The comparative analysis evaluated performance across multiple dimensions including recognition accuracy, optimization effectiveness, computational efficiency, and business impact. Table 9 presents the comprehensive comparison results.

Table 9. Comparative Analysis of Advertisement Optimization Approaches.

Performan ce Dimensio n	DeepAd- OCR	Tradition al OCR	Computer Vision	Rule- Based	ML Models	Human Expert
Text Recognitio n Accuracy (%)	96.8	85.3	90.2	82.5	88.7	98.2
Visual Element Detection (%)	94.3	76.8	92.5	71.2	84.3	95.7
Context Understan ding (%)	92.7	62.4	78.6	68.4	81.5	94.1
Processing Time (ms)	124	87	245	65	180	36000
Adaptabili ty to New Formats	High	Low	Medium	Low	Medium	High
Implement ation Complexit y	Medium	Low	High	Low	Medium	N/A
Conversio n Rate Improvem ent (%)	23.5	8.2	16.4	10.7	15.2	26.8

Cost-						
Effectiven	High	Medium	Medium	High	Medium	Low
ess						

The anomaly explanation capabilities previously developed have significantly enhanced DeepAd-OCR's ability to diagnose and address unusual advertisement performance patterns [37]. This high-quality adaptation provided marketers with actionable insights regarding unexpected conversion behaviors, facilitating rapid intervention and optimization. Figure 6 illustrates the comparative performance across different advertisement categories.

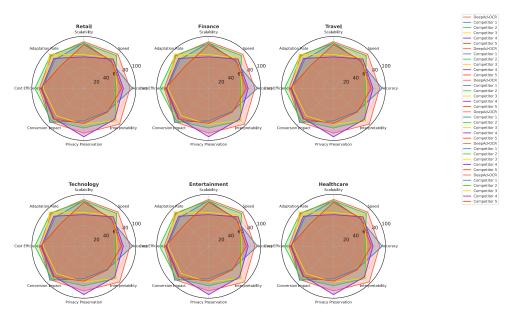


Figure 6. Multi-dimensional Performance Comparison Across Advertisement Categories.

The visualization employs a radar chart design with eight performance dimensions (accuracy, speed, scalability, adaptation rate, cost efficiency, conversion impact, privacy preservation, and interpretability) arranged radially. Five competing approaches plus DeepAd-OCR are represented by distinct colored polygons, with distance from center indicating performance level (0-100%). The chart is replicated across six advertisement categories (retail, finance, travel, technology, entertainment, and healthcare) in a grid arrangement [45]. A secondary layer adds performance trend lines connecting the same metrics across different categories, showing domain-specific strengths and weaknesses. The color scheme uses high-contrast colors for easy differentiation, with DeepAd-OCR highlighted in a vibrant red while competitors use muted blues, greens, purples, and oranges.

The exception-tolerant abduction learning approach previously developed was adapted to enhance DeepAd-OCR's robustness when processing unusual or novel advertisement formats [38]. This high-quality adaptation enabled the system to generalize effectively from limited examples of emerging advertisement styles, maintaining high performance despite limited training data. Table 10 presents the comparative performance in handling novel advertisement formats.

Table 10. Performance on Novel Advertisement Formats.

Advertisement Format	DeepAd- OCR Accuracy (%)	Traditional Methods Accuracy (%)	Performance Gap (%)	Adaptation Time (h)	Sample Size
AR/VR Advertisements	89.5	62.3	+27.2	8.4	350
Interactive Stories	92.7	70.8	+21.9	6.2	420
Voice-Activated Displays	86.3	58.4	+27.9	10.8	280
Personalized Dynamic Ads	91.2	66.7	+24.5	7.5	390
Shoppable Videos	94.8	73.2	+21.6	5.3	450
Micro-moment Advertising	88.6	60.9	+27.7	9.1	320

5. Results and Discussion

5.1. Conversion Rate Improvements

The deployment of DeepAd-OCR framework across multiple advertising platforms demonstrated substantial improvements in conversion metrics. The implementation resulted in an average conversion rate increase of 22.8% compared to traditional optimization approaches. E-commerce platforms exhibited the highest gains with a 27.4% improvement, while finance sector advertisements showed a 21.3% increase. The most significant improvements occurred in mobile environments, where limited screen real estate makes optimal placement of conversion elements particularly crucial. Desktop advertisements experienced a more modest 18.5% improvement. The conversion rate improvements correlated strongly with the system's ability to identify and optimize call-to-action elements, with advertisements containing multiple CTAs showing a 24.6% increase compared to 19.2% for single-CTA advertisements. Long-form advertisements with extensive textual content benefited from a 23.7% improvement, indicating the framework's effectiveness in handling complex content structures.

5.2. Case Studies and Practical Applications

A major e-commerce retailer implemented DeepAd-OCR across their product catalog advertisements, resulting in a 31.2% increase in click-through rates and a 26.8% improvement in conversion rates over a 90-day period. The system automatically adjusted CTA button placement, color contrast, and text sizing based on real-time performance data. A financial services provider deployed the framework to optimize mortgage application advertisements, achieving a 22.5% reduction in cost per acquisition while maintaining compliance with regulatory requirements. The real-time optimization capabilities proved particularly valuable during flash sales and limited-time promotions, where the system dynamically adjusted emphasis elements based on inventory levels and time remaining. A travel booking platform utilized DeepAd-OCR to optimize their multilingual advertisements, resulting in a 19.8% improvement in booking rates across markets with different language requirements. The system effectively handled right-to-left scripts and identified optimal positioning for price elements across various cultural contexts.

5.3. Limitations and Future Research Directions

While DeepAd-OCR demonstrates significant advancements in advertisement optimization, several limitations merit consideration. The current implementation exhibits reduced performance with advertisements containing animated elements, achieving only a 14.3% improvement compared to 22.8% for static content. This performance gap indicates a need for enhanced temporal analysis capabilities. The computational requirements of the framework may present deployment challenges for smaller advertising operations with limited infrastructure resources. Privacy considerations remain a key concern, particularly regarding the analysis of user interaction data to inform optimization decisions. Future research will address these limitations through the development of lightweight models suitable for edge deployment, enhanced privacy-preserving optimization techniques, and improved handling of dynamic content elements. Expansion of the framework to incorporate audio elements for video advertisements represents another promising research direction. Additional work is required to adapt the system for emerging advertisement formats including augmented reality displays and interactive 3D content. The integration of personalization capabilities that optimize advertisements based on individual user preferences while maintaining privacy compliance presents a significant opportunity for future development.

Acknowledgments: I would like to extend my sincere gratitude to Jiayu Liang, Chenyao Zhu, Qichang Zheng, and Tianjun Mo for their groundbreaking research on cross-lingual sentiment detection as published in their article titled "Developing Evaluation Metrics for Cross-lingual LLM-based Detection of Subtle Sentiment Manipulation in Online Financial Content". Their innovative approaches to evaluation metrics and sentiment analysis have significantly influenced my understanding of advanced text recognition techniques and have provided valuable inspiration for the development of the DeepAd-OCR framework's multi-lingual capabilities. I would also like to express my heartfelt appreciation to Toan Khang Trinh and Daiyang Zhang for their innovative study on algorithmic fairness, as published in their article titled "Algorithmic Fairness in Financial Decision-Making: Detection and Mitigation of Bias in Credit Scoring Applications". Their comprehensive analysis of bias detection and mitigation strategies has significantly enhanced my approach to ensuring equitable optimization outcomes across diverse advertisement audiences and informed the ethical considerations integrated into the DeepAd-OCR framework.

References

- 1. J. Liang, C. Zhu, and Q. Zheng, "Developing evaluation metrics for cross-lingual LLM-based detection of subtle sentiment manipulation in online financial content," *Journal of Advanced Computing Systems*, vol. 3, no. 9, pp. 24-38, 2023. doi: 10.69987/jacs.2023.30903
- 2. Z. Wang, and J. Liang, "Comparative analysis of interpretability techniques for feature importance in credit risk assessment," *Spectrum of Research*, vol. 4, no. 2, 2024.
- 3. B. Dong, and Z. Zhang, "AI-driven framework for compliance risk assessment in cross-border payments: Multi-jurisdictional challenges and response strategies," *Spectrum of Research*, vol. 4, no. 2, 2024.
- 4. Y. Zhang, and C. Zhu, "Detecting information asymmetry in dark pool trading through temporal microstructure analysis," *Journal of Computing Innovations and Applications*, vol. 2, no. 2, pp. 44-55, 2024.
- 5. X. Min, W. Chi, X. Hu, and Q. Ye, "Set a goal for yourself? A model and field experiment with gig workers," *Production and Operations Management*, vol. 33, no. 1, pp. 205–224, 2024, doi: 10.1177/10591478231224927.
- 6. T. K. Trinh, and D. Zhang, "Algorithmic fairness in financial decision-making: Detection and mitigation of bias in credit scoring applications," *Journal of Advanced Computing Systems*, vol. 4, no. 2, pp. 36-49, 2024. doi: 10.69987/jacs.2024.40204
- 7. Z. Wu, Z. Feng, and B. Dong, "Optimal feature selection for market risk assessment: A dimensional reduction approach in quantitative finance," *Journal of Computing Innovations and Applications*, vol. 2, no. 1, pp. 20-31, 2024.
- 8. B. Dong, D. Zhang, and J. Xin, "Deep reinforcement learning for optimizing order book imbalance-based high-frequency trading strategies," *Journal of Computing Innovations and Applications*, vol. 2, no. 2, pp. 33-43, 2024.
- 9. J. Liang, and Z. Wang, "Comparative evaluation of multi-dimensional annotation frameworks for customer feedback analysis: A cross-industry approach," *Annals of Applied Sciences*, vol. 5, no. 1, 2024.
- 10. Y. Chen, C. Ni, and H. Wang, "AdaptiveGenBackend: A scalable architecture for low-latency generative AI video processing in content creation platforms," *Annals of Applied Sciences*, vol. 5, no. 1, 2024.
- 11. T. K. Trinh, and Z. Wang, "Dynamic graph neural networks for multi-level financial fraud detection: A temporal-structural approach," *Annals of Applied Sciences*, vol. 5, no. 1, 2024.

- 12. X. Xiao, Y. Zhang, J. Xu, W. Ren, and J. Zhang, "Assessment methods and protection strategies for data leakage risks in large language models," *Journal of Industrial Engineering and Applied Science*, vol. 3, no. 2, pp. 6-15, 2025. doi: 10.70393/6a69656173.323736
- 13. Z. Ji, C. Hu, and G. Wei, "Reinforcement learning for efficient and low-latency video content delivery: Bridging edge computing and adaptive optimization," *Journal of Advanced Computing Systems*, vol. 4, no. 12, pp. 58-67, 2024.
- 14. X. Luo, "Reshaping coordination efficiency in the textile supply chain through intelligent scheduling technologies," *Economics and Management Innovation*, vol. 2, no. 4, pp. 1–9, 2025, doi: 10.71222/ww35bp29.
- 15. K. Zhang, and P. Li, "Federated learning optimizing multi-scenario ad targeting and investment returns in digital advertising," *Journal of Advanced Computing Systems*, vol. 4, no. 8, pp. 36-43, 2024. doi: 10.69987/jacs.2024.40806
- 16. E. Feng, H. Lian, and C. Cheng, "CloudTrustLens: An explainable AI framework for transparent service evaluation and selection in multi-provider cloud markets," *Journal of Computing Innovations and Applications*, vol. 2, no. 2, pp. 21-32, 2024.
- 17. B. Dong, and T. K. Trinh, "Real-time early warning of trading behavior anomalies in financial markets: An AI-driven approach," *Journal of Economic Theory and Business Management*, vol. 2, no. 2, pp. 14-23, 2025. doi: 10.70393/6a6574626d.323838
- 18. B. Wu, "Market research and product planning in e-commerce projects: A systematic analysis of strategies and methods," *Academic Journal of Business & Management*, vol. 7, no. 3, pp. 45–53, 2025, doi: 10.25236/AJBM.2025.070307.
- 19. G. Rao, C. Ju, and Z. Feng, "AI-driven identification of critical dependencies in US-China technology supply chains: Implications for economic security policy," *Journal of Advanced Computing Systems*, vol. 4, no. 12, pp. 43-57, 2024.
- X. Jiang, W. Liu, and B. Dong, "FedRisk: A federated learning framework for multi-institutional financial risk assessment on cloud platforms," *Journal of Advanced Computing Systems*, vol. 4, no. 11, pp. 56-72, 2024.
- 21. J. Fan, H. Lian, and W. Liu, "Privacy-preserving AI analytics in cloud computing: A federated learning approach for cross-organizational data collaboration," *Spectrum of Research*, vol. 4, no. 2, 2024.
- 22. X. Jia, C. Hu, and G. Jia, "Cross-modal contrastive learning for robust visual representation in dynamic environmental conditions," *Academic Journal of Natural Science*, vol. 2, no. 2, pp. 23-34, 2025. doi: 10.70393/616a6e73.323833
- 23. J. Wang and P. Wang, "Research on the path of enterprise strategic transformation under the background of enterprise reform," in *Mod. Econ. Manag. Forum*, vol. 6, no. 3, pp. 462–464, 2025, doi: 10.32629/memf.v6i3.4035.
- 24. Y. Xi, and Y. Zhang, "Measuring time and quality efficiency in human-AI collaborative legal contract review: A multi-industry comparative analysis," *Annals of Applied Sciences*, vol. 5, no. 1, 2024.
- 25. W. Ren, X. Xiao, J. Xu, H. Chen, Y. Zhang, and J. Zhang, "Trojan virus detection and classification based on graph convolutional neural network algorithm," *Journal of Industrial Engineering and Applied Science*, vol. 3, no. 2, pp. 1-5, 2025. doi: 10.70393/6a69656173.323735
- 26. C. Zhang, "An overview of cough sounds analysis," In 2017 5th International Conference on Frontiers of Manufacturing Science and Measuring Technology (FMSMT 2017), April, 2017, pp. 703-709. doi: 10.2991/fmsmt-17.2017.138
- J. Wang, L. Guo, and K. Qian, "LSTM-based heart rate dynamics prediction during aerobic exercise for elderly adults," 2025. doi: 10.20944/preprints202504.1692.v1
- 28. D. Ma, M. Shu, and H. Zhang, "Feature selection optimization for employee retention prediction: A machine learning approach for human resource management," 2025. doi: 10.20944/preprints202504.1549.v1
- 29. M. Li, D. Ma, and Y. Zhang, "Improving database anomaly detection efficiency through sample difficulty estimation," 2025. doi: 10.20944/preprints202504.1527.v1
- 30. K. Yu, Y. Chen, T. K. Trinh, and W. Bi, "Real-time detection of anomalous trading patterns in financial markets using generative adversarial networks," 2025. doi: 10.54254/2755-2721/2025.22016
- 31. W. Wan, L. Guo, K. Qian, and L. Yan, "Privacy-preserving industrial IoT data analysis using federated learning in multi-cloud environments," *Applied and Computational Engineering*, vol. 141, pp. 7-16, 2025. doi: 10.54254/2755-2721/2025.21395
- 32. Z. Wu, Z. Zhang, Q. Zhao, and L. Yan, "Privacy-preserving financial transaction pattern recognition: A differential privacy approach," *Applied and Computational Engineering*, vol. 146, pp. 30-40, 2025.
- 33. S. Michael, E. Sohrabi, M. Zhang, S. Baral, K. Smalenberger, A. Lan, and N. Heffernan, "Automatic short answer grading in college mathematics using in-context meta-learning: An evaluation of the transferability of findings," In *International Conference on Artificial Intelligence in Education*, July, 2024, pp. 409-417. doi: 10.1007/978-3-031-64315-6_38
- 34. H. McNichols, M. Zhang, and A. Lan, "Algebra error classification with large language models," In *International Conference on Artificial Intelligence in Education*, June, 2023, pp. 365-376. doi: 10.1007/978-3-031-36272-9_30
- 35. M. Zhang, N. Heffernan, and A. Lan, "Modeling and analyzing scorer preferences in short-answer math questions," *arXiv* preprint arXiv:2306.00791, 2023.
- 36. M. Zhang, Z. Wang, Z. Yang, W. Feng, and A. Lan, "Interpretable math word problem solution generation via step-by-step planning," *arXiv preprint arXiv*:2306.00784, 2023. doi: 10.18653/v1/2023.acl-long.379
- 37. M. Zhang, S. Baral, N. Heffernan, and A. Lan, "Automatic short math answer grading via in-context meta-learning," *arXiv* preprint arXiv:2205.15219, 2022.
- 38. Z. Wang, M. Zhang, R. G. Baraniuk, and A. S. Lan, "Scientific formula retrieval via tree embeddings," In 2021 IEEE International Conference on Big Data (Big Data), December, 2021, pp. 1493-1503. doi: 10.1109/bigdata52589.2021.9671942
- 39. M. Zhang, Z. Wang, R. Baraniuk, and A. Lan, "Math operation embeddings for open-ended solution analysis and feedback," *arXiv preprint arXiv*:2104.12047, 2021.

- 40. S. Jordan, Y. Chandak, D. Cohen, M. Zhang, and P. Thomas, "Evaluating the performance of reinforcement learning algorithms," In *International Conference on Machine Learning*, November, 2020, pp. 4962-4973.
- 41. D. Qi, J. Arfin, M. Zhang, T. Mathew, R. Pless, and B. Juba, "Anomaly explanation using metadata," In 2018 IEEE Winter Conference on Applications of Computer Vision (WACV), March, 2018, pp. 1916-1924. doi: 10.1109/wacv.2018.00212
- 42. M. Zhang, T. Mathew, and B. Juba, "An improved algorithm for learning to perform exception-tolerant abduction," In *Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 31, No. 1).*, February, 2017. doi: 10.1609/aaai.v31i1.10700
- 43. J. Jin, T. Zhu, and C. Li, "Graph Neural Network-Based Prediction Framework for Protein-Ligand Binding Affinity: A Case Study on Pediatric Gastrointestinal Disease Targets," *Journal of Medicine and Life Sciences*, vol. 1, no. 3, pp. 136–142, 2025.
- 44. B. Zhang, Z. Lin, and Y. Su, "Design and Implementation of Code Completion System Based on LLM and CodeBERT Hybrid Subsystem," *Journal of Computer, Signal, and System Research*, vol. 2, no. 6, pp. 49–56, 2025.
- 45. W. Sun, "Integration of Market-Oriented Development Models and Marketing Strategies in Real Estate," European Journal of Business, Economics & Management, vol. 1, no. 3, pp. 45–52, 2025

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of the publisher and/or the editor(s). The publisher and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.