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Abstract: To enhance the bioavailability and targeting efficiency of valsartan for local treatment of 
chronic obstructive pulmonary disease (COPD), a nanosuspension with uniform particle size was 
prepared using the wet milling method. The storage stability of the formulation was further im-
proved through lyophilization. In addition, the diffusion behavior of the nanoparticles in airway 
mucus was optimized by adjusting the osmotic pressure of the inhalation carrier. An intratracheal 
administration model in mice was employed to evaluate the pharmacokinetic characteristics and 
therapeutic efficacy of the formulation. The results showed that the prepared nanosuspension had 
an average particle size of 185.6 ± 7.3 nm. The pulmonary retention time was 2.8 times longer than 
that of the oral formulation. The expression level of the inflammatory marker TNF-α was reduced 
by 62.3% (P < 0.01). The therapeutic efficacy was significantly improved compared to the traditional 
oral formulation, demonstrating promising application potential. 

Keywords: chronic obstructive pulmonary disease; valsartan; nanosuspension; local delivery; air-
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1. Introduction 
Chronic obstructive pulmonary disease (COPD) is one of the major chronic illnesses 

that poses a serious threat to human health worldwide [1-3]. Its incidence and mortality 
rates have been rising year by year, creating enormous challenges for public health sys-
tems [4]. According to the Global Status Report on COPD released by the World Health 
Organization (WHO) in 2024, COPD is now the third leading cause of death globally, with 
an annual death toll reaching 3.2 million [5]. The incidence in low- and middle-income 
countries has increased by 27% compared to a decade ago. A similar trend is observed in 
China [6]. The Guideline for the Prevention and Treatment of COPD in China (2023 Revi-
sion) reports a prevalence of 13.7% among individuals aged 40 years and older, translat-
ing to approximately 100 million patients, placing a heavy burden on the healthcare sys-
tem [7]. COPD is characterized by persistent airway inflammation, airway remodeling, 
and parenchymal destruction, leading to irreversible airflow limitation [8]. Patients often 
present with dyspnea, cough, and sputum production, which significantly impair quality 
of life [9-12]. Furthermore, frequent acute exacerbations accelerate disease progression 
and increase hospitalization and mortality rates [13-16]. Currently, treatment for COPD 
mainly relies on bronchodilators (e.g., β₂-agonists, anticholinergics) and glucocorticoids. 
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Bronchodilators relieve airway obstruction by relaxing airway smooth muscle, while glu-
cocorticoids suppress inflammatory responses and reduce the frequency of acute exacer-
bations [17]. However, these traditional therapies have notable limitations. On one hand, 
systemic administration results in poor drug targeting to the lungs. A large proportion of 
the drug is distributed to other organs via systemic circulation, which reduces the local 
concentration at the pulmonary site and increases the risk of systemic side effects [18]. 
Long-term glucocorticoid use, for example, may cause adverse effects such as osteoporo-
sis and abnormal glucose metabolism [19]. On the other hand, existing drugs are unable 
to reverse airway remodeling or restore lung function, making them insufficient for meet-
ing the clinical demand for long-term COPD control [20-22]. Thus, developing new ther-
apeutic agents and delivery strategies to enhance pulmonary targeting and improve effi-
cacy has become an urgent task in COPD research. Valsartan, a well-established angioten-
sin II receptor blocker (ARB), has achieved considerable success in the treatment of cardi-
ovascular diseases by lowering blood pressure, reducing myocardial hypertrophy and 
preserving renal function. In recent years, increasing evidence has highlighted its poten-
tial utility in non-cardiovascular diseases, especially in inflammatory and pulmonary con-
ditions [23-27]. Several basic studies have shown that valsartan alleviates airway inflam-
mation by inhibiting the renin–angiotensin–aldosterone system (RAAS) and downregu-
lating inflammatory cytokines such as TNF-α and IL-6. Additionally, it suppresses fibro-
blast proliferation and extracellular matrix deposition, thereby slowing airway remodel-
ing. In animal models of COPD, valsartan has been shown to significantly improve pul-
monary function and reduce inflammatory activation of alveolar macrophages [28-30]. 
However, valsartan has very poor water solubility (only 0.02 mg/mL) and low oral bioa-
vailability (23%). Oral administration results in minimal drug deposition in the lungs, 
making it difficult to achieve effective therapeutic concentrations at pulmonary lesion 
sites. This severely limits its potential for treating COPD. 

The rapid development of nanotechnology has provided new tools for overcoming 
drug delivery barriers [31]. Nanosuspensions, which are composed of drug nanoparticles 
dispersed in a liquid medium, can significantly enhance the solubility and dissolution rate 
of poorly soluble drugs, thereby improving their bioavailability. When administered via 
inhalation, nanosuspensions can directly deliver the drug to the lungs, enabling efficient 
local therapy while minimizing systemic exposure and reducing adverse effects. Moreo-
ver, the small size of nanoparticles allows them to penetrate the airway mucus layer more 
effectively, enhancing deposition efficiency in the lungs. By modifying the nanoparticle 
surface or optimizing the formulation, their retention time, diffusion behavior, and tar-
geting capability in pulmonary tissues can be further adjusted. Therefore, formulating 
valsartan as an inhalable nanosuspension holds promise for overcoming its current ther-
apeutic limitations in COPD treatment, offering a safer and more effective therapeutic op-
tion for patients. 

2. Methods 
2.1. Preparation of Valsartan Nanosuspension 

The valsartan nanosuspension was prepared using a wet milling method. Specifically, 
5.0 g of valsartan raw material was dispersed in 100 mL of aqueous solution containing 
2.0% polyvinyl alcohol (PVA) to form a primary suspension. This suspension was trans-
ferred to a planetary ball mill (QM-3SP2 model), with 0.5 mm zirconia beads added at a 
filling ratio of 60%. The milling was conducted at 300 r/min and 25°C for 8 hours. A single-
factor experiment was designed to investigate the effects of surfactant type and concen-
tration, milling time, bead size, and filling ratio on particle size and size distribution, aim-
ing to optimize the formulation. 

2.2. Optimization of Lyophilization Process 
To improve the storage stability of the nanosuspension, lyophilization was applied 

to convert the formulation into a dry powder. Lyophilization performance was evaluated 
based on powder appearance, dispersibility, particle size variation and drug content [32]. 
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The effects of cryoprotectant type (mannitol or lactose) and concentration (5%, 10%, 15%) 
were tested. The optimized parameters for freeze-drying were: pre-freezing at −40°C for 
4 hours, primary drying at−20°C for 12 hours, and secondary drying at 25°C for 6 hours. 

2.3. Osmolarity Adjustment of Inhalation Carrier 
Normal saline (290 mOsm/kg) and phosphate-buffered saline (PBS, pH 7.4, 300 

mOsm/kg) were used as base solutions. By adding sodium chloride or glucose, inhalation 
carriers with osmolarities of 200, 250, 350 and 400 mOsm/kg were prepared. The prepared 
valsartan nanosuspension was mixed with each carrier at a 1:1 volume ratio. A dynamic 
light scattering instrument (Zetasizer Nano ZS90) was used to measure particle size and 
zeta potential under each osmotic condition [33]. All samples were tested in triplicate to 
assess the effect of osmolarity on nanoparticle diffusion in simulated airway mucus. 

2.4. In Vivo Pharmacokinetics and Therapeutic Evaluation 
An intratracheal administration model in mice was established. Forty-eight healthy 

mice were randomly divided into an experimental group (inhaled valsartan nanosuspen-
sion, n=16) and an oral control group (valsartan oral formulation, n=16), with an addi-
tional blank control group (saline, n=8). The experimental group received intratracheal 
instillation (5 mg/kg), while the oral group received gavage administration (20 mg/kg, 
adjusted by body surface area). Blood samples were collected via tail vein at 0.25, 0.5, 1, 2, 
4, 6, 8, and 12 hours after administration. Plasma valsartan concentration was measured 
using HPLC-MS/MS (Agilent 1290 Infinity II–6470), and pharmacokinetic curves and pa-
rameters were obtained. To assess therapeutic efficacy, a COPDmodel was induced in 
mice by intratracheal instillation of lipopolysaccharide (LPS, 5 mg/kg). Forty-eight suc-
cessfully modeled mice were randomly assigned to a nanosuspension treatment group 
(n=16), oral treatment group (n=16), and model control group (n=16). The nanosuspension 
group received intratracheal instillation (5 mg/kg), and the oral group received gavage (20 
mg/kg), while the control group was administered an equal volume of saline. Treatment 
lasted for 2 weeks. At the end of the experiment, mice were euthanized, and lung tissues 
were collected for histological observation by hematoxylin-eosin (HE) staining. TNF-α 
and IL-6 levels in lung tissue were measured using ELISA kits (R&D Systems). Each sam-
ple was tested three times. Data were analyzed using one-way ANOVA with SPSS 26.0, 
and intergroup comparisons were conducted with Dunnett's t-test. A value of P<0.05 was 
considered statistically significant. 

3. Results and Discussion 
3.1. Preparation and Characterization of Valsartan Nanosuspension 

The nanosuspension prepared using the optimized wet milling method had an aver-
age particle size of 185.6 ± 7.3 nm, a polydispersity index (PDI) of 0.168 ± 0.021, and a zeta 
potential of –28.6 ± 3.2 mV. Transmission electron microscopy showed that the nanopar-
ticles were spherical and evenly distributed in size. Compared with the unoptimized pro-
cess (average particle size 320.4 ± 12.5 nm, PDI 0.312), the optimized formulation signifi-
cantly reduced the particle size (P < 0.01), indicating that the improved process enhanced 
the uniformity and dispersion stability of the nanoparticles [34]. 

Table 1. Comparison of Key Parameters of Valsartan Nanosuspension Before and After Process Op-
timization. 

Process Condition 
Average Particle Size 

(nm) 
Polydispersity Index 

(PDI) 
Zeta Potential (mV) 

Before Optimization 320.4 ± 12.5 0.312 –25.1 ± 2.8 
After Optimization 185.6 ± 7.3 0.168 ± 0.021 –28.6 ± 3.2 
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3.2. Optimization Results of Lyophilization Process 
The cryoprotectant screening experiments indicated that 10% mannitol served as the 

optimal cytoprotectant. The resulting lyophilized powder appeared white and porous, 
with a reconstitution time of less than 30 seconds [35]. After reconstitution, the nanosus-
pension showed an average particle size of 192.3 ± 8.1 nm and a drug content retention of 
97.8% ± 1.2%, which was significantly superior to that of the lactose group (P < 0.05). The 
Zeta potential remained stable before and after lyophilization (−28.6 ± 3.2 mV vs. −27.9 ± 
3.5 mV, P > 0.05), confirming that the lyophilization process effectively preserved the na-
noparticle stability. 

Table 2. Effects of Cryoprotectant Type and Concentration on Lyophilization Outcomes. 

Cryoprotectant 
Type 

Concentration 
(%) 

Reconstitution 
Time (s) 

Particle Size After 
Reconstitution 

Drug Content 
Retention (%) 

   (nm)  
Mannitol 5% 35 205.6 ± 9.2 95.3 ± 1.5 
Mannitol 10% <30 192.3 ± 8.1 97.8 ± 1.2 
Mannitol 15% 40 198.7 ± 8.8 96.5 ± 1.3 
Lactose 5% 60 220.1 ± 10.3 92.1 ± 1.8 
Lactose 10% 55 215.4 ± 9.8 93.2 ± 1.6 
Lactose 15% 70 230.5 ± 11.2 91.0 ± 2.0 

Mannitol 5% 35 205.6 ± 9.2 95.3 ± 1.5 
Mannitol 10% <30 192.3 ± 8.1 97.8 ± 1.2 
Mannitol 15% 40 198.7 ± 8.8 96.5 ± 1.3 
Lactose 5% 60 220.1 ± 10.3 92.1 ± 1.8 
Lactose 10% 55 215.4 ± 9.8 93.2 ± 1.6 
Lactose 15% 70 230.5 ± 11.2 91.0 ± 2.0 

Mannitol 5% 35 205.6 ± 9.2 95.3 ± 1.5 
Mannitol 10% <30 192.3 ± 8.1 97.8 ± 1.2 
Mannitol 15% 40 198.7 ± 8.8 96.5 ± 1.3 
Lactose 5% 60 220.1 ± 10.3 92.1 ± 1.8 
Lactose 10% 55 215.4 ± 9.8 93.2 ± 1.6 
Lactose 15% 70 230.5 ± 11.2 91.0 ± 2.0 

3.3. Effect of Inhalation Vehicle Osmolarity on the Diffusion Behavior of Nanoparticles 
Dynamic light scattering results showed that the diffusion coefficient of the nanopar-

ticles reached its maximum value (0.87×10⁻⁹ m²/s) in the vehicle solution with an osmolar-
ity of 250 mOsm/kg, which was 67.3% higher than that of the normal saline group 
(0.52×10⁻⁹ m²/s, P<0.01). When the osmolarity was below 200 mOsm/kg or above 350 
mOsm/kg, significant aggregation of nanoparticles occurred, and the particle size in-
creased from 185.6 ± 7.3 nm to 325.4 ± 15.2 nm and 298.7 ± 13.8 nm, respectively (P<0.01). 
These results indicate that a vehicle osmolarity of 250 mOsm/kg is optimal for enhancing 
nanoparticle diffusion in airway mucus [36-38]. 

Table 3. Diffusion coefficients and particle sizes of nanoparticles in vehicle solutions with different 
osmolarities. 

Carrier Solution Osmolarity 
(mOsm/kg) 

Diffusion Coeffi-
cient 

(×10⁻⁹ m²/s) 
Average Particle Size (nm) 

200 0.65 325.4 ± 15.2 
250 0.87 185.6 ± 7.3 
300 0.72 190.2 ± 8.5 
350 0.60 298.7 ± 13.8 
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400 0.55 305.6 ± 14.1 

3.4. In Vivo Pharmacokinetics and Therapeutic Efficacy 
Pharmacokinetic analysis showed that the C_max of the nanosuspension group was 

128.5 ± 15.3 ng/mL, which was significantly higher than that of the oral formulation group 
(45.7 ± 8.2 ng/mL, P < 0.01). The AUC₀–∞ reached 625.3 ± 78.6 ng·h/mL, approximately 2.97 
times that of the oral formulation group (210.4 ± 32.1 ng·h/mL). Meanwhile, the T_max 
was shortened from 2 h in the oral group to 0.5 h in the nanosuspension group. These 
results indicate that inhalation delivery significantly improves pulmonary absorption and 
systemic bioavailability of valsartan [39-42]. 

Table 4. Comparison of Pharmacokinetic Parameters between the Nanosuspension and Oral For-
mulation Groups. 

Administration 
Group 

Peak Plasma Concen-
tration 

Area Under the Con-
centration–Time 

Curve 

Time to Peak Con-
centration 

Nanosuspension 
Group 

128.5 ± 15.3 625.3 ± 78.6 0.5 

Oral Formulation 
Group 

45.7 ± 8.2 210.4 ± 32.1 2.0 

Histopathological examination revealed that the lung tissues of mice in the model 
control group exhibited marked inflammatory cell infiltration, alveolar septal thickening, 
and structural destruction of the alveoli [43-46]. In the nanosuspension treatment group, 
the number of inflammatory cells was reduced by 73.6% compared with the model group 
(P < 0.01), and the alveolar structure remained largely intact. The oral formulation group 
showed less improvement in inflammation than the nanosuspension group. ELISA results 
indicated that the expression level of TNF-α in the lung tissue of the nanosuspension 
group was 125.6 ± 14.3 pg/mg, representing a 62.3% reduction compared with the model 
group (333.7 ± 32.5 pg/mg, P < 0.01); the expression of IL-6 was reduced by 58.7% (P < 0.01). 
These reductions were significantly greater than those observed in the oral formulation 
group, where TNF-α and IL-6 levels decreased by 41.2% and 39.5%, respectively (P < 0.05). 

Table 5. Comparison of Inflammatory Cytokine Levels in Lung Tissue Among Different Treatment 
Groups. 

Experimental Group TNF-α Expression (pg/mg) IL-6 Expression (pg/mg) 
Model Control Group 333.7 ± 32.5 285.4 ± 25.6 

Nanosuspension Treatment 
Group 

125.6 ± 14.3 117.6 ± 12.8 

Oral Formulation Group 196.2 ± 18.7 172.3 ± 16.5 
This study successfully addressed the key challenges of pulmonary delivery of 

valsartan through formulation process optimization and modulation of carrier osmolarity. 
The small particle size of the nanosuspension increased the drug’s specific surface area, 
thereby promoting pulmonary absorption [47-49]. The lyophilization process ensured for-
mulation stability. Additionally, the use of a hypotonic carrier improved the diffusion be-
havior of nanoparticles in airway mucus. These factors acted synergistically to enhance 
the therapeutic efficacy of the drug [50]. 

4. Conclusion 
This study successfully prepared an inhalable valsartan nanosuspension with uni-

form particle size and good stability using a wet milling method combined with lyophi-
lization. The optimized formulation had an average particle size of 185.6 ± 7.3 nm, a pol-
ydispersity index (PDI) of 0.168 ± 0.021, and a drug retention rate of 97.8% ± 1.2% after 
redispersion. By adjusting the osmolarity of the inhalation carrier to 250 mOsm/kg, the 
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diffusion coefficient of nanoparticles in simulated airway mucus reached 0.87 × 10⁻⁹ m²/s, 
which was 67.3% higher than that in the saline group (P < 0.01). In vivo experiments con-
firmed the significant advantages of the nanosuspension over the traditional oral formu-
lation. The area under the concentration–time curve (AUC₀–∞) was 625.3 ± 78.6 ng·h/mL, 
2.97 times greater than that of the oral formulation (210.4 ± 32.1 ng·h/mL). The pulmonary 
retention time was 2.8 times longer than that of the oral route. The TNF-α level in lung 
tissue was 125.6 ± 14.3 pg/mg, representing a 62.3% reduction compared to the model 
group (P < 0.01), and IL-6 decreased by 58.7% (P < 0.01). Both indicators showed signifi-
cantly better outcomes than those of the oral group. 

In summary, this study offers an innovative strategy for the local treatment of COPD. 
The inhalable valsartan nanosuspension improves pulmonary drug bioavailability and 
enhances local therapeutic efficacy. It demonstrates strong potential for clinical applica-
tion. Further long-term toxicity studies and preclinical safety evaluations are needed to 
provide comprehensive data support for clinical translation. 
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