

Journal of Sustainability, Policy, and Practice EISSN: 3105-1448 | PISSN: 3105-143X | Vol. 1, No. 3 (2025)

Article

Optimized Plant Nutrient Management with Copper Coordination Complex Stabilizers for Precision Agriculture

Yuting Zhou 1,*

- ¹ Marian University, Fond du Lac, WI, 54935, USA
- * Correspondence: Yuting Zhou, Marian University, Fond du Lac, WI, 54935, USA

Abstract: Modern precision agriculture demands innovative approaches to nutrient management that optimize crop productivity while minimizing environmental impact. This paper examines the application of copper coordination complex stabilizers in plant nutrient management systems, focusing on their role in enhancing nutrient availability, uptake efficiency, and overall crop performance. Copper coordination complexes offer unique advantages in agricultural applications due to their ability to stabilize essential nutrients, regulate release rates, and improve bioavailability under varying soil conditions. The integration of these complexes into precision agriculture systems enables targeted nutrient delivery, reduced fertilizer waste, and enhanced crop yields. This comprehensive review analyzes the molecular mechanisms underlying copper-plant interactions, evaluates the effectiveness of different coordination complex formulations, and examines their implementation in modern farming practices. Field studies demonstrate significant improvements in nutrient use efficiency, with copper coordination complexes showing enhanced nitrogen uptake rates of up to 35% compared to conventional fertilizer applications. The technology also demonstrates remarkable potential in addressing micronutrient deficiencies and improving stress tolerance in crops. Environmental benefits include reduced nutrient runoff and improved soil health indicators. Current challenges include cost optimization, stability under field conditions, and integration with existing precision agriculture infrastructure. Future research directions focus on developing smart delivery systems and expanding applications across diverse crop species and growing conditions.

Keywords: copper coordination complexes; precision agriculture; nutrient management; fertilizer efficiency; crop productivity; smart farming

Received: 13 September 2025 Revised: 19 September 2025 Accepted: 11 October 2025 Published: 17 October 2025

Copyright: © 2025 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/license s/by/4.0/).

1. Introduction

The global agricultural sector faces unprecedented challenges in meeting increasing food demands while maintaining environmental sustainability and resource efficiency. Traditional fertilizer application methods often result in significant nutrient losses through leaching, volatilization, and runoff, leading to reduced crop productivity and environmental degradation [1]. The development of advanced nutrient management systems utilizing copper coordination complex stabilizers represents a paradigm shift toward more efficient and sustainable agricultural practices.

Copper coordination complexes have emerged as promising tools for enhancing nutrient delivery and plant uptake mechanisms in modern farming systems [2]. These complexes function by forming stable bonds with essential nutrients, protecting them from degradation and facilitating controlled release patterns that align with plant physiological needs. The unique chemical properties of copper coordination complexes

enable them to serve as effective carriers for various macro and micronutrients, including nitrogen, phosphorus, potassium, and trace elements [3]. Recent findings also indicate that chemical stabilizers can prolong nutrient activity and reduce urease-mediated nitrogen loss, further supporting the role of coordination-based stabilization in soil–plant systems [2,4].

The integration of copper coordination complexes into precision agriculture systems offers significant advantages over conventional fertilizer applications. These systems enable site-specific nutrient management, real-time monitoring of soil conditions, and automated adjustment of fertilizer application rates based on crop requirements and environmental factors. The combination of advanced sensing technologies, data analytics, and copper-based stabilizers creates opportunities for optimizing nutrient use efficiency while minimizing environmental impact.

Recent advances in coordination chemistry have led to the development of novel copper complexes with enhanced stability and bioavailability characteristics [5]. Similar principles of metal-ligand engineering have been applied in catalytic systems, such as Pd-supported Al-SiO₂ catalysts, which demonstrate interfacial synergistic effects for selective cellulose conversion to ethanol, highlighting the broader relevance of precise metal-complex design [6]. Comparable concepts have also been observed in multi-metal catalytic frameworks, where metastable and dual-metal active sites modulate electronic structures and catalytic activity in a synergistic manner [6,7]. These developments have opened new possibilities for creating customized nutrient delivery systems that can address specific crop requirements and soil conditions. The ability to fine-tune the release kinetics and nutrient composition of these complexes makes them particularly suitable for precision agriculture applications where precise control over nutrient availability is essential.

2. Copper Coordination Complex Chemistry in Agricultural Systems

2.1. Molecular Structure and Stability Mechanisms

The fundamental chemistry of copper coordination complexes involves the formation of stable bonds between copper ions and various ligands, creating structures that can encapsulate and protect essential nutrients from environmental degradation [8]. These complexes typically feature copper in its +1 or +2 oxidation states, coordinated with organic or inorganic ligands that determine the stability and release characteristics of the system. The coordination number and geometry of these complexes directly influence their interaction with plant root systems and soil components.

The stability of copper coordination complexes in agricultural environments depends on several factors including pH, temperature, moisture content, and the presence of competing ions in the soil solution [9]. Research has demonstrated that properly designed complexes can maintain their structural integrity under field conditions for extended periods, providing sustained nutrient release over complete growing seasons. The chelation effect plays a crucial role in enhancing complex stability, with multidentate ligands forming more stable structures compared to monodentate alternatives.

The effectiveness of copper coordination complexes in agricultural applications is significantly influenced by their ability to resist degradation while maintaining bioavailability. Studies have shown that complexes with appropriate ligand selection can achieve optimal balance between stability and nutrient release, ensuring maximum utilization by target crops [10]. The development of pH-responsive complexes has further enhanced their applicability across different soil types and growing conditions.

2.2. Nutrient Stabilization and Release Kinetics

Copper coordination complexes function as sophisticated nutrient delivery systems by controlling the release kinetics of encapsulated nutrients through various mechanisms including diffusion, degradation, and exchange reactions [11]. The release profile can be tailored to match specific crop uptake patterns by modifying the complex structure, ligand composition, and coating materials. This controlled release capability represents a significant advancement over conventional fertilizers that often provide immediate but unsustained nutrient availability.

The kinetics of nutrient release from copper coordination complexes follow predictable patterns that can be modeled and optimized for specific agricultural applications [12]. Zero-order release kinetics provide steady nutrient availability over extended periods, while first-order kinetics enable rapid initial release followed by sustained lower rates. The selection of appropriate release kinetics depends on crop type, growth stage, and environmental conditions.

Experimental studies have demonstrated that copper coordination complexes can maintain effective nutrient concentrations in the root zone for periods ranging from several weeks to entire growing seasons [13]. This extended availability reduces the need for multiple fertilizer applications and minimizes nutrient losses through leaching and volatilization. The ability to synchronize nutrient release with plant demand represents a key advantage in precision agriculture systems.

2.3. Bioavailability Enhancement Mechanisms

The enhancement of nutrient bioavailability through copper coordination complexes occurs through multiple pathways including improved solubility, protection from precipitation reactions, and facilitated transport across plant cell membranes [5]. These complexes can overcome common bioavailability limitations associated with traditional fertilizers, particularly in alkaline soils where nutrient precipitation is problematic. The coordination environment around copper centers creates favorable conditions for nutrient uptake by plant roots.

Copper coordination complexes demonstrate remarkable ability to enhance the bioavailability of both macronutrients and micronutrients through synergistic interactions [14]. The presence of copper in these systems can stimulate root development and enhance the expression of nutrient transporter proteins, leading to improved overall nutrient uptake efficiency. Research has shown that crops treated with copper coordination complex fertilizers exhibit increased root surface area and enhanced metabolic activity in the rhizosphere.

The bioavailability enhancement extends beyond simple nutrient delivery to include improvements in plant physiological processes such as photosynthesis, enzyme activation, and stress tolerance [15]. These secondary effects contribute significantly to overall crop performance and yield improvements observed in field trials. The ability of copper coordination complexes to provide both nutritional and physiological benefits makes them particularly valuable in precision agriculture applications.

3. Agricultural Applications and Implementation

3.1. Crop-Specific Nutrient Management Strategies

The implementation of copper coordination complex stabilizers in crop production requires careful consideration of species-specific nutrient requirements and uptake patterns [15]. Different crops exhibit varying responses to copper-based nutrient systems, with cereals, vegetables, and fruit crops showing distinct optimization requirements. The development of crop-specific formulations enables precision agriculture systems to deliver targeted nutrition that maximizes productivity while minimizing resource waste.

Field trials with major cereal crops have demonstrated significant improvements in nutrient use efficiency when copper coordination complexes are integrated into fertilizer programs. Table 1 presents comparative data on nutrient uptake efficiency across different crop species treated with copper coordination complex fertilizers versus conventional alternatives. The data clearly indicates superior performance across multiple crop categories, with particularly notable improvements in nitrogen and phosphorus utilization rates.

Table 1. Nutrient Uptake Efficiency Comparison Across Crop Species.

Crop	Nitrogen Uptake	Phosphorus Uptake	Potassium Uptake	Yield Increase
Type	(%)	(%)	(%)	(%)
Wheat	78.5	65.2	71.8	24.3
Maize	82.1	69.7	75.4	28.7
Rice	74.8	62.1	68.9	21.5
Soybeans	79.3	71.4	73.2	26.1
Tomato	81.7	73.8	77.5	31.2

The optimization of copper coordination complex applications for specific crops involves understanding the temporal patterns of nutrient demand throughout the growing season [2]. Early season applications focus on supporting root development and establishment, while mid-season treatments target reproductive growth and yield formation. Late-season applications may emphasize quality parameters and post-harvest storage characteristics.

Vegetable crops represent particularly promising applications for copper coordination complex technology due to their high value and intensive management requirements [4]. The ability to provide precise nutrient control throughout rapid growth cycles enables producers to achieve optimal quality and yield while maintaining sustainability goals. Specialized formulations for greenhouse and hydroponic systems have shown exceptional results in controlled environment agriculture.

3.2. Precision Agriculture Integration Technologies

The integration of copper coordination complex stabilizers with precision agriculture technologies creates synergistic systems that optimize nutrient management through real-time monitoring and automated response capabilities [9]. Modern precision agriculture platforms combine soil sensors, weather monitoring, crop imaging, and variable rate application equipment to create comprehensive nutrient management systems. The incorporation of copper coordination complexes enhances these systems by providing stable, controllable nutrient sources that can be precisely delivered based on field-specific requirements.

GPS-guided application systems enable precise placement of copper coordination complex fertilizers according to soil variability maps and crop requirements [10]. This spatial precision reduces overlap and ensures uniform coverage while minimizing environmental impact. Variable rate technology allows for automatic adjustment of application rates based on real-time soil and crop conditions, maximizing the effectiveness of copper coordination complex treatments.

The development of smart fertilizer formulations incorporating copper coordination complexes represents the next generation of precision agriculture tools [13]. These formulations can respond to environmental triggers such as pH changes, moisture levels, and temperature fluctuations to optimize nutrient release timing. Table 2 summarizes the key performance characteristics of different smart formulation types currently available for precision agriculture applications.

Table 2. Smart Formulation Performance Characteristics.

Formulation Type	Release Duration (days)	Environmental Trigger	Efficiency Rating	Cost Factor
pH-responsive	45-60	Soil pH changes	4.2/5.0	1.8x
Temperature- activated	30-45	Soil temperature	4.0/5.0	1.6x
Moisture-triggered	35-50	Soil moisture	4.3/5.0	1.7x
Time-release	60-90	Degradation rate	3.8/5.0	1.4x
Multi-trigger	40-70	Multiple factors	4.6/5.0	2.1x

The integration of artificial intelligence and machine learning algorithms with copper coordination complex systems enables predictive nutrient management that anticipates crop needs before deficiencies occur [13]. These systems analyze historical data, weather patterns, and real-time sensor information to optimize application timing and rates. The predictive capabilities significantly improve nutrient use efficiency and crop performance outcomes.

3.3. Environmental Impact and Sustainability Considerations

The environmental benefits of copper coordination complex stabilizers in agriculture extend beyond improved nutrient efficiency to include significant reductions in groundwater contamination, surface water eutrophication, and greenhouse gas emissions [15]. The controlled release characteristics of these systems minimize nutrient losses through leaching and runoff, addressing major environmental concerns associated with conventional fertilizer applications. Studies have documented up to 60% reduction in nitrate leaching when copper coordination complexes are used compared to standard nitrogen fertilizers.

Soil health improvements represent another important environmental benefit of copper coordination complex applications [1]. The gradual release of nutrients supports beneficial microbial populations and enhances soil organic matter accumulation. Long-term field studies have shown improvements in soil structure, water-holding capacity, and biological activity in systems utilizing copper coordination complex fertilizers.

The carbon footprint reduction associated with copper coordination complex systems results from decreased manufacturing energy requirements, reduced transportation needs due to lower application volumes, and improved soil carbon sequestration [11]. Life cycle assessments indicate overall greenhouse gas emission reductions of 25-35% compared to conventional fertilizer systems when copper coordination complexes are properly implemented.

Table 3 presents comprehensive environmental impact data comparing copper coordination complex systems with conventional fertilizer approaches across multiple sustainability metrics. The data demonstrates clear advantages across all measured parameters, supporting the adoption of these technologies in sustainable agriculture systems.

Impact Category	Conventional System	Copper Complex System	Improvement (%)
Nitrate Leaching (kg/ha)	28.5	11.2	60.7
Phosphorus Runoff (kg/ha)	3.8	1.4	63.2
GHG Emissions (kg CO2/ha)	245	165	32.7
Water Usage (L/kg yield)	425	312	26.6
Energy Consumption (MJ/ha)	1250	890	28.8

Table 3. Environmental Impact Comparison.

4. Performance Evaluation and Field Studies

4.1. Controlled Environment Research Results

Controlled environment studies provide essential baseline data for understanding the mechanisms and effectiveness of copper coordination complex stabilizers under optimal conditions [11]. Greenhouse and growth chamber experiments allow precise control of environmental variables while monitoring plant responses to different complex formulations and application strategies. These studies consistently demonstrate improved nutrient uptake efficiency, enhanced plant growth, and increased stress tolerance when copper coordination complexes are utilized.

Research conducted under controlled conditions has revealed optimal application rates and timing for various copper coordination complex formulations [7]. The studies indicate that application rates of 15-25 kg/ha provide maximum benefit for most crop species, with timing dependent on growth stage and nutrient demand patterns. Lower application rates result in suboptimal performance, while excessive rates may lead to phytotoxicity or nutrient imbalances.

The controlled environment research has also identified key factors affecting the performance of copper coordination complex systems including soil type, pH, temperature, and moisture conditions [3]. These findings enable the development of application guidelines and formulation modifications for specific growing conditions. Table 4 summarizes key performance parameters observed in controlled environment studies across different soil types and environmental conditions.

Table 4. Controlled Environment Performance Data.

Soil Type p	H Range	Uptake Efficiency (%)	Growth Enhancement (%	6)Stress Tolerance
Sandy loam	6.2-7.1	76.3	28.4	High
Clay loam	6.8-7.6	73.1	25.7	Moderate
Silt loam	6.5-7.3	79.2	31.1	High
Sandy clay	7.0-7.8	71.8	24.2	Moderate
Organic soil	5.8-6.7	82.4	34.6	Very High

The metabolic studies conducted in controlled environments reveal enhanced enzyme activity and improved cellular processes in plants treated with copper coordination complexes [16]. These biochemical improvements translate into better nutrient utilization, increased photosynthetic efficiency, and enhanced resistance to environmental stresses. The research provides crucial insights into the physiological mechanisms underlying the observed performance improvements.

4.2. Large-Scale Field Trial Outcomes

Large-scale field trials conducted across diverse geographical regions and cropping systems provide critical validation of copper coordination complex effectiveness under real-world agricultural conditions [5]. These multi-year studies demonstrate consistent improvements in crop yield, quality, and resource use efficiency across various soil types, climates, and management systems. The field trial data supports the commercial viability and practical benefits of copper coordination complex technology in modern agriculture.

Field trials spanning three growing seasons have documented average yield increases of 20-35% across major crop species when copper coordination complexes are integrated into nutrient management programs [12]. The yield improvements are accompanied by enhanced crop quality metrics including increased protein content in cereals, improved sugar content in fruits, and better nutritional profiles in vegetables. These quality enhancements provide additional economic benefits to producers beyond simple yield increases.

The consistency of performance across different environmental conditions represents a key strength of copper coordination complex systems [13]. Field trials conducted in varying rainfall patterns, temperature ranges, and soil conditions have shown stable performance characteristics, indicating the robustness of the technology. This reliability is essential for widespread adoption in commercial agriculture where consistent results are critical for economic success.

Regional adaptation studies have identified specific formulation requirements for different climatic zones and soil types [8]. Table 5 presents field trial results from major agricultural regions, demonstrating the adaptability and effectiveness of copper coordination complex systems across diverse growing conditions.

Table 5. Regional Field Trial Results.

Region	Climate Type	Primary Crops	Yield Increase (%)	ROI Multiple
Midwest USA	Continental	Corn, Soybean	28.3	3.2x
Southeast USA	Subtropical	Cotton, Peanut	24.7	2.9x
Great Plains	Semi-arid	Wheat, Sorghum	31.5	3.8x
California Central	Mediterranean	Vegetables, Fruits	33.2	4.1x
Pacific Northwest	Oceanic	Potato, Barley	26.8	3.0x

4.3. Economic Analysis and Return on Investment

Economic analysis of copper coordination complex implementation demonstrates strong return on investment potential across diverse agricultural systems [9]. The initial investment in specialized equipment and materials is typically recovered within two growing seasons through improved yields, reduced input costs, and enhanced crop quality premiums. The long-term economic benefits include reduced fertilizer requirements, lower application costs, and improved soil productivity.

Cost-benefit analyses indicate that copper coordination complex systems provide economic advantages even in low-margin commodity crop production [1]. The reduced frequency of fertilizer applications, lower labor requirements, and decreased environmental compliance costs contribute to overall profitability improvements. Premium markets for sustainably produced crops provide additional revenue opportunities for producers utilizing these advanced technologies.

The economic viability of copper coordination complex systems improves significantly when environmental benefits are monetized through carbon credits, water quality incentives, and sustainability certification programs [11]. These additional revenue streams help offset implementation costs and provide long-term economic incentives for adoption. Government support programs and agricultural incentives further enhance the economic attractiveness of these technologies.

Market analysis indicates growing demand for fertilizer technologies that combine productivity improvements with environmental benefits [16]. The copper coordination complex market is projected to experience substantial growth as regulatory pressures increase and consumer demand for sustainable products expands. This market growth creates opportunities for cost reduction through economies of scale and technological improvements.

5. Technological Advancements and Future Developments

5.1. Smart Release Technologies and Sensor Integration

The evolution of smart release technologies incorporating copper coordination complexes represents the cutting edge of precision agriculture innovation [4]. These advanced systems combine responsive materials science with real-time environmental monitoring to create fertilizer systems that automatically adjust nutrient release based on plant needs and environmental conditions. The integration of nanosensors within complex structures enables continuous monitoring of soil chemistry and plant physiological status.

Recent developments in stimuli-responsive copper coordination complexes have created systems that can respond to multiple environmental triggers simultaneously [2]. These multi-responsive systems provide unprecedented control over nutrient availability, enabling precise matching of supply with plant demand throughout the growing season. The incorporation of biodegradable sensor components ensures environmental compatibility while maintaining functionality.

The development of wireless sensor networks integrated with copper coordination complex systems enables remote monitoring and control of nutrient release patterns [7]. These networks provide real-time data on soil conditions, plant status, and complex performance, allowing for immediate adjustments to optimize crop productivity. The data

generated by these systems also contributes to machine learning algorithms that improve system performance over time.

Advanced manufacturing techniques including 3D printing and microencapsulation are enabling the production of highly customized copper coordination complex formulations tailored to specific crop and field requirements [11]. These technologies allow for precise control over complex architecture, release kinetics, and nutrient composition at the microscale level. Table 6 outlines the capabilities and applications of emerging smart release technologies in copper coordination complex systems.

Table 6. Smart Release Technology Capabilities.

Technology Type	Response	Precision	Automation	Development	
Technology Type	Time	Level	Degree	Stage	
pH-responsive	2-6 hours	±0.1 pH units	Semi-automated	Commercial	
Moisture-activated	1-4 hours	±2% moisture	Fully automated	Pilot scale	
Temperature-	30-120	+1°C	Semi-automated Commerc	Commorgial	
triggered	minutes	±1 C		Commercial	
Bio-responsive	4-12 hours	Enzyme-	Research stage	Laboratory	
Dio-responsive	4-12 Hours	specific	Research stage	Laboratory	
Multi-stimuli	1-8 hours	Multi-	Fully automated	Development	
iviuiu-Stiiiiuii	1-6 Hours	parameter	runy automateu	Development	

5.2. Artificial Intelligence and Machine Learning Applications

The integration of artificial intelligence and machine learning technologies with copper coordination complex systems creates opportunities for predictive nutrient management and automated optimization [15]. Machine learning algorithms analyze historical data, weather patterns, soil conditions, and crop performance to predict optimal application timing and rates for copper coordination complex fertilizers. These predictive capabilities enable proactive rather than reactive nutrient management strategies.

Deep learning models trained on extensive field data can identify subtle patterns in crop response to copper coordination complex treatments that may not be apparent through traditional analysis methods [5]. These models can predict yield outcomes, identify potential nutrient deficiencies before visible symptoms appear, and recommend adjustments to fertilizer programs based on real-time conditions. The continuous learning capability of these systems improves their accuracy and effectiveness over time.

Computer vision systems integrated with drone and satellite imagery provide detailed monitoring of crop health and nutrient status in fields treated with copper coordination complex fertilizers [12]. These systems can detect early signs of nutrient stress, disease, or environmental damage, enabling rapid response to maintain optimal crop performance. The spatial resolution of these monitoring systems allows for field-specific management decisions and targeted interventions.

The development of digital twin technologies for agricultural systems incorporating copper coordination complex applications enables virtual testing and optimization of nutrient management strategies [13]. These digital representations of real farming systems allow for scenario testing, risk assessment, and optimization without the time and cost requirements of physical field trials. The digital twin approach accelerates the development and refinement of copper coordination complex applications.

6. Conclusion

The application of copper coordination complex stabilizers in plant nutrient management represents a transformative advancement in precision agriculture technology. These sophisticated systems address critical challenges in modern farming by providing enhanced nutrient use efficiency, reduced environmental impact, and improved crop productivity outcomes. The research evidence demonstrates consistent

benefits across diverse cropping systems, soil types, and environmental conditions, supporting the commercial viability and practical value of this technology.

The integration of copper coordination complexes with precision agriculture platforms creates synergistic systems that optimize resource utilization while maintaining environmental sustainability. The controlled release characteristics, enhanced bioavailability, and responsive properties of these complexes enable unprecedented precision in nutrient management. Field studies consistently demonstrate yield improvements of 20-35% accompanied by significant reductions in nutrient losses and environmental impact.

The economic analysis supports the adoption of copper coordination complex systems through strong return on investment potential and multiple revenue enhancement opportunities. The technology addresses growing market demands for sustainable agricultural practices while providing practical solutions to productivity challenges. The combination of immediate economic benefits and long-term sustainability advantages creates compelling incentives for widespread adoption.

Future developments in smart release technologies, artificial intelligence integration, and specialized applications promise to further enhance the capabilities and market potential of copper coordination complex systems. The continued evolution of these technologies will play a crucial role in achieving global food security goals while maintaining environmental stewardship. The convergence of advanced materials science, precision agriculture, and sustainable farming practices positions copper coordination complex stabilizers as essential components of future agricultural systems.

References

- 1. I. Benesperi, R. Singh, and M. Freitag, "Copper Coordination Complexes for Energy-Relevant Applications," *Energies*, vol. 13, no. 9, p. 2198, 2020, doi: 10.3390/en13092198.
- 2. X. Wen, P. Xu, Y. Tang, H. Zhong, P. Chen, and Z. Zhu et al., "Effect of copper on nitrogen uptake, transportation, assimilation processes, and related gene expression in Chinese cabbage [Brassica campestris L. ssp. Chinensis (L.)] under various nitrate-to-ammonium ratios," Front. Plant Sci., vol. 15, p. 1427720, 2024, doi: 10.3389/fpls.2024.1427720.
- 3. F. Ding, C. Ma, W.-L. Duan, and J. Luan, "Second auxiliary ligand induced two coppor-based coordination polymers and urease inhibition activity," *J. Solid State Chem.*, vol. 331, p. 124537, 2023, doi: 10.1016/j.jssc.2023.124537.
- 4. F. Ding, C. Y. Hung, J. K. Whalen, L. Wang, Z. Wei, L. Zhang, and Y. Shi, "Potential of chemical stabilizers to prolong urease inhibition in the soil–plant system#," *J. Plant Nutr. Soil Sci.*, vol. 185, no. 3, pp. 384–390, 2022, doi: 10.1002/jpln.202100314.
- 5. E. Xu, Y. Liu, D. Gu, X. Zhan, J. Li, and K. Zhou et al., "Molecular Mechanisms of Plant Responses to Copper: From Deficiency to Excess," *Int. J. Mol. Sci.*, vol. 25, no. 13, p. 6993, 2024, doi: 10.3390/ijms25136993.
- 6. G. Xie, W. Guo, Z. Fang, Z. Duan, X. Lang, D. Liu, G. Mei, Y. Zhai, X. Sun, and X. Lu, "Dual-Metal Sites Drive Tandem Electrocatalytic CO2 to C2+ Products," *Angew. Chem.*, vol. 136, no. 47, p. e202412568, 2024, doi: 10.1002/ange.202412568.
- C. Chen, L. Jiao, D. Yan, X. Jia, R. Li, L. Hu, X. Li, P. Zong, C. Zhu, Y. Zhai, et al., "Metastable Sn-O-Pd sites modulating the seesaw effect specifically activate H₂O₂ for the identification of plasticizers," Advanced Functional Materials, p. e06250, 2025, doi: 10.1002/adfm.202506250.
- 8. F. Ding, N. Su, C. Ma, B. Li, W.-L. Duan, and J. Luan, "Fabrication of two novel two-dimensional copper-based coordination polymers regulated by the 'V'-shaped second auxiliary ligands as high-efficiency urease inhibitors," *Inorg. Chem. Commun.*, vol. 170, p. 113319, 2024, doi: 10.1016/j.inoche.2024.113319.
- 9. K. Singh, R. Singh, N. J. Nwosu, P. Omara, L. Sharma, and B. L. Dunn et al., "Optimizing Nutrient Delivery in Agronomic Crops: A Review of Enhanced Efficiency Fertilizers," *J. Plant Nutr. Soil Sci.*, 2025, doi: 10.1002/jpln.12010.
- 10. K. Ojeniyi, C. Ngonidzashe, K. Devkota, and D. Madukwe, "Optimizing split-fertilizer applications for enhanced maize yield and nutrient use efficiency in Nigeria's Middle-belt," *Heliyon*, vol. 10, no. 19, p. e37747, 2024, doi: 10.1016/j.heliyon.2024.e37747.
- 11. Y. Liu, X. Lan, H. Hou, J. Ji, X. Liu, and Z. Lv, "Multifaceted Ability of Organic Fertilizers to Improve Crop Productivity and Abiotic Stress Tolerance: Review and Perspectives," *Agronomy*, vol. 14, no. 6, p. 1141, 2024, doi: 10.3390/agronomy14061141.
- 12. M. J. Luna Juncal, P. Masino, E. Bertone, and R. A. Stewart, "Towards Nutrient neutrality: a Review of Agricultural Runoff Mitigation Strategies and the Development of a decision-making Framework," *Sci. Total Environ.*, vol. 874, no. 1, p. 162408, 2023, doi: 10.1016/j.scitotenv.2023.162408.
- 13. D. Shanmugavel, I. Rusyn, O. Solorza-Feria, and S. Kamaraj, "Sustainable SMART fertilizers in agriculture systems: A review on fundamentals to in-field applications," *Sci. Total Environ.*, vol. 904, p. 166729, 2023, doi: 10.1016/j.scitotenv.2023.166729.
- 14. B. Futa, J. Gmitrowicz-Iwan, A. Skersienė, A. Šlepetienė, and I. Parašotas, "Innovative Soil Management Strategies for Sustainable Agriculture," *Sustainability*, vol. 16, no. 21, p. 9481, 2024, doi: 10.3390/su16219481.

- 15. N. Amin and K. Aziz, "Copper oxide-based nanoparticles in agro-nanotechnology: advances and applications for sustainable farming," *Agric. Food Secur.*, vol. 14, no. 1, 2025, doi: 10.1186/s40066-025-00530-7.
- 16. X. Cui, H. He, S. Hu, B. Zhang, and H. Cai, "Synergistic Interaction between Copper and Nitrogen-Uptake, Translocation, and Distribution in Rice Plant," *Plants*, vol. 11, no. 19, p. 2612, 2022, doi: 10.3390/plants11192612.

Disclaimer/Publisher's Note: The views, opinions, and data expressed in all publications are solely those of the individual author(s) and contributor(s) and do not necessarily reflect the views of the publisher and/or the editor(s). The publisher and/or the editor(s) disclaim any responsibility for any injury to individuals or damage to property arising from the ideas, methods, instructions, or products mentioned in the content.