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Abstract: Current photodynamic therapy fails. Not occasionally-systematically. We measured opti-
cal coefficients across 1,847 lesions: peripheral zones exhibit μs' ≈ 20 cm⁻¹ while necrotic zones μs' ≈ 
0.8 cm⁻¹, a 25-fold discontinuity that renders uniform protocols obsolete. Drug clearance varies 
threefold. One patient metabolizes protoporphyrin IX in two hours; another requires six. Oxygen 
maps tell an equally chaotic story-partial pressures crash from 95 mmHg to anoxic thresholds within 
minutes, creating dead zones where photochemistry simply stops. We built a system that adapts. 
Deep reinforcement learning processes 384 physiological signals in real-time, adjusting power den-
sity and fractionation schedules every 100 milliseconds. The architecture splits decision-making: 
one network learns patient baselines, another computes action advantages. This dueling structure 
stabilizes training on sparse clinical data, where 62.5% of treatments historically achieved only par-
tial or no response. Results contradict decades of conservative practice. Phototoxicity decreased 
from 18.3% to 7.6%, a relative risk reduction of 58% (95% CI: 49-66%). Complete responses jumped 
from 37.8% to 58.7%-not through gentler treatment, but through aggressive, precisely-timed inter-
ventions the algorithm discovered autonomously. A paradox emerged: lower doses for superficial 
lesions, intense protocols for deep tumors, opposite to clinical intuition. The system runs on stand-
ard GPUs. No specialized hardware. Forty-seven prospective patients confirmed what retrospective 
analysis suggested: adaptive control fundamentally outperforms fixed protocols. 

Keywords: deep reinforcement learning; LED-based photodynamic therapy; adaptive dose control; 
personalized medicine 
 

1. Introduction 
1.1. Current Challenges in Led-Based Photodynamic Therapy Dosimetry 

A 635 nm LED array at 150 J/cm² should work predictably. It doesn't. We tracked 324 
treatments with identical protocols as a preliminary analysis-same tumor grade, same an-
atomical site, same protocol. Results ranged from complete ablation to zero response. The 
problem wasn't the equipment. 

Tissue heterogeneity dominates outcomes. Consider oxygen dynamics: baseline StO₂ 
reads ~95%, suggesting adequate perfusion. Start irradiation. Within 90 seconds, con-
sumption outpaces delivery. Gradients form. Perivascular regions maintain 60% satura-
tion while zones 200 microns away drop below 20%-the threshold where singlet oxygen 
generation ceases entirely. Standard protocols can't see this. They deliver photons to dead 
tissue. 

Wu's team discovered similar chaos in thermal patterns [1]. Burns that appeared uni-
form showed 23% variation in deep tissue damage when analyzed with reinforcement 
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learning. PDT exhibits worse heterogeneity. We measured temperature spreads exceeding 
10°C within single treatment fields, enough to denature proteins in hot spots while leav-
ing cold regions untreated. 

The mathematics are unforgiving. Singlet oxygen production follows Type II photo-
chemistry: ³PS* + ³O₂ → PS + ¹O₂, where quantum yield depends on triplet state lifetime, 
oxygen concentration, and quenching rates. Each variable fluctuates independently. Mi-
crovascular architecture-chaotic in tumors, organized in normal tissue-determines local 
oxygen flux. Some vessels shunt. Others stagnate. Perfusion heterogeneity index (PHI) 
values reach 0.73 in malignant tissue versus 0.21 in healthy controls. 

Drug distribution adds another layer. Protoporphyrin IX doesn't distribute uni-
formly-it pools. Necrotic cores accumulate 10-fold higher concentrations than viable rims. 
But necrotic tissue lacks vasculature. No oxygen means no reaction, regardless of drug 
concentration. Meanwhile, well-perfused edges with minimal drug still respond. The mis-
match between drug location and reaction capability defines treatment failure. 

This study specifically focuses on LED-based PDT systems due to their advantages 
in delivering uniform illumination fields, cost-effectiveness, and enhanced safety profiles 
compared to laser-based alternatives. All experimental validation was performed using 
LED arrays [Commercial LED array system (635nm, 0-200 mW/cm² adjustable power den-
sity), 635nm]. 

1.2. Limitations of Fixed-Dose Protocols and Need for Personalization 
Population protocols assume average patients. Average patients don't exist. 
Take two basal cell carcinomas, both 15mm in diameter, both on facial skin. Lesion 

A sits on the nose-thin epidermis, dense vasculature, optical penetration depth 2.3mm. 
Lesion B occupies the temple-actinic damage, dermal thickening, penetration depth 
0.8mm. Same diagnosis, same size, threefold difference in treatable volume. Saager 
proved this quantitatively: absorption varies from 0.15 to 0.75 cm⁻¹ within individual tu-
mors [2]. Light that penetrates 4mm in one region dies at 1mm in another. 

Pharmacokinetics destroys reproducibility further. We tracked PpIX accumulation in 
a subset of 743 patients. Peak times ranged from 2 to 8 hours post-administration. Why? 
Circadian effects-morning doses peak 40% faster. Age matters: patients over 70 clear 
drugs at 0.6 mL/min/kg versus 1.1 mL/min/kg in younger cohorts. Liver function explains 
some variance. CYP3A4 polymorphisms explain more. But 30% remains unexplained-
likely reflecting unmeasured metabolic variations. 

The trust problem compounds technical challenges. Nath documented physician re-
sistance to algorithmic ophthalmology recommendations [3]. Black boxes fail in medicine. 
Doctors need explanations, not just predictions. They reject systems that contradict train-
ing, even when data support deviation. Our approach aims to bridge this gap-optimizing 
outcomes while maintaining interpretability. 

1.3. Research Objectives 
We abandon predetermined protocols entirely. 
The system monitors continuously: tissue oxygen via near-infrared spectroscopy, 

drug concentration through fluorescence, temperature with fiber Bragg gratings, perfu-
sion using laser Doppler, and inflammatory markers via bedside immunoassays. Five 
data streams, 384 total features, synchronized at a 10Hz master clock, providing updates 
every 100 milliseconds. Every 100 milliseconds, deep networks evaluate the physiological 
state and adjust treatment parameters. Not retrospectively-during irradiation. 

Three constraints shape the architecture. First, safety: hard limits on temperature 
(45°C), with a soft limit at 43°C, dose (300 J/cm²), and hypoxia duration. Safety controller 
implements hierarchical limits: (1) Soft limit at 43°C triggers power reduction to 75% of 
current level; (2) Hard limit at 45°C immediately terminates irradiation with mandatory 
60s cooling period; (3) Cumulative thermal dose monitored using CEM43 (cumulative 
equivalent minutes at 43°C), with session termination if CEM43 > 120 minutes at 95th per-
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centile location. Second, latency: decisions within 100 milliseconds to maintain therapeu-
tic momentum. Third, interpretability: every recommendation must trace to a physiolog-
ical justification. 

We validate across scales. Historical data (1,847 sessions) trains base models. Monte 
Carlo simulations explore parameter spaces clinically inaccessible-what happens at 500 
mW/cm²? How do tumors respond to microsecond pulsing? Animal models would take 
years; simulation provides answers in hours. Finally, 47 prospective patients test real-
world performance. No cherry-picking. Consecutive enrollment. Standard clinical set-
tings. 

2. Related Work and Theoretical Foundation 
2.1. Evolution of Dose Control Methods in Photodynamic Therapy 

Early PDT relied on observation. Erythema means effect. No erythema meant an in-
creased dose. Crude but occasionally effective. Animal models brought quantification-
mice revealed dose thresholds: 15-25 J/cm² for vascular shutdown, 50-100 J/cm² for direct 
kill, 150-200 J/cm² for immune activation. The numbers seemed universal. They weren't. 

Species don't scale. Mouse metabolic rate: 0.18 mL O₂/g/h. Human: 0.06 mL O₂/g/h. 
A threefold difference in oxygen consumption fundamentally alters photodynamic kinet-
ics. A protocol lethal to murine tumors barely affects human lesions. Worse, mice lack the 
heterogeneity that defines human disease. Laboratory tumors grow predictably. Clinical 
tumors don't. 

Tirand's work changed thinking [4]. Low fluence rates-counterintuitively-worked 
better. Not 100 mW/cm² but 25 mW/cm². Less power, more effect. The mechanism: oxygen 
depletion and reperfusion balance. High power exhausts oxygen faster than blood deliv-
ers it. Reactions cease. Low power maintains a steady state. The discovery invalidated 
decades of "more is better" philosophy. 

Mathematical models emerged to capture these dynamics. Reaction-diffusion equa-
tions. Monte Carlo photon transport. Finite element thermal analysis. Beautiful mathe-
matics, poor predictions. Why? Parameter uncertainty. Optical coefficients vary by 200% 
between measurements on the same tissue. Models assuming fixed values fail. Models 
incorporating uncertainty become computationally intractable. 

2.2. Machine Learning Applications in Medical Light Therapy 
Machine learning found patterns humans missed. 
Walter's team aimed to optimize Staphylococcus aureus killing [5]. Standard ap-

proach: test wavelengths systematically. Machine learning approach: let gradients find 
optima. The algorithm discovered dual peaks-415nm and 545nm-corresponding to endog-
enous porphyrins nobody knew existed in sufficient quantities. Bacteria died faster at 
"wrong" wavelengths than at established protocols. 

But point predictions aren't enough. Clinical data contains noise, missing values, and 
measurement error. Ensemble methods help. Random forests average uncertainty. Gradi-
ent boosting corrects systematic bias. Bayesian networks quantify confidence. Shen com-
bined these for brachytherapy planning -18% dose conformity improvement over human 
plans [6]. Not by being smarter, but by considering more possibilities simultaneously. 

Transfer learning accelerates deployment. Networks trained on melanoma images 
adapt to PDT fluorescence with 100 examples instead of 10,000. Feature extractors learn 
universal patterns-edges, textures, gradients-that generalize across modalities. The bottle-
neck shifts from data quantity to quality. 

2.3. Reinforcement Learning Paradigms for Treatment Optimization 
PDT is sequential. Each decision affects subsequent options. Reinforcement learning 

handles such problems naturally. 
The framework is simple. States encode patient condition. Actions adjust treatment. 

Rewards reflect outcomes. The algorithm learns which actions in which states maximize 
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cumulative reward. Not immediate reward-that leads to greedy, suboptimal policies. 
Long-term reward, considering future consequences. 

Shilyagina established physical constraints for LED sources [7]. Minimum effective 
power: 10 mW/cm². Maximum safe power: 200 mW/cm². Action space defined. But con-
tinuous spaces challenge classical methods. Discretization loses precision. Function ap-
proximation introduces instability. Deep networks help, but require careful architecture. 

Zheng demonstrated feasibility in ICU oxygen therapy [8]. The system learned to 
anticipate desaturation events, adjusting FiO₂ preemptively rather than reactively. Mor-
tality dropped 12%. PDT poses similar challenges-anticipating photobleaching, prevent-
ing hypoxia, and managing thermal accumulation. Success in critical care suggests PDT 
applications will work [9]. 

3. Proposed Adaptive Dose Optimization Algorithm 
3.1. Deep Reinforcement Learning Framework Architecture 

Traditional Q-learning fails here. State spaces are continuous, high-dimensional, and 
partially observable. We need function approximation. We need stability. We need sample 
efficiency on limited clinical data. 

The solution: dueling networks. Instead of learning 𝑄𝑄(𝑠𝑠, 𝑎𝑎) directly, we decompose: 
𝑄𝑄(𝑠𝑠, 𝑎𝑎) = 𝑉𝑉(𝑠𝑠) + 𝐴𝐴(𝑠𝑠, 𝑎𝑎) −𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝐴𝐴(𝑠𝑠, )) 

𝑉𝑉(𝑠𝑠) captures patient prognosis independent of treatment. 𝐴𝐴(𝑠𝑠, 𝑎𝑎) isolates action-
specific benefits. Why split? Most states don't require action; stable patients need moni-
toring, not intervention. The value stream learns these patterns. The advantage stream 
focuses on critical decisions. Separation improves learning efficiency by an order of mag-
nitude. 

Architecture details matter. Spatial encoder: three convolutional blocks (32, 64, 128 
filters), 3×3 kernels, ReLU activation, batch normalization. Why these numbers? Empirical 
testing across 50 configurations. Larger networks overfit. Smaller networks underfit. This 
structure captures tumor boundaries and vascular patterns without memorizing patient-
specific artifacts [10]. 

Temporal processing uses LSTMs. Hidden dimension: 128. Window: 30 seconds. 
Shorter windows miss trends. Longer windows dilute urgent signals. The forget gate 
learns to discard outdated vitals while preserving relevant history. Attention mechanisms 
weigh recent measurements higher during rapid changes. 

Initialization shapes convergence. Xavier initialization: 𝑊𝑊~𝑁𝑁�0,�
2

fanavg
�. Prevents 

gradient explosion in deep networks. Bias: 0.01, slightly positive to avoid dead neurons. 
Dropout: 0.3 in dense layers only-convolutions need all features for spatial coherence. 
Target network updates: 𝜃𝜃new′ ← 0.001𝜃𝜃 + 0.999𝜃𝜃old′ . Slow blending stabilizes learning 
(Table 1). 

Table 1. Neural Network Architecture Specifications. 

Component Configuration Parameters Activation Purpose 

Spatial Encoder 
Conv2D (32) → Conv2D (64) 

→Conv2D (128) 
856,544 ReLU 

Feature extrac-
tion 

Temporal Pro-
cessor 

LSTM (128) → LSTM (64) → 
Dense (128) 

234,112 
Tanh/Sig-

moid 
Sequence mod-

eling 

Value Stream 
Dense (256) →Dense (128) → 

Dense (1) 
33,409 Linear 

State evalua-
tion 

Advantage 
Stream 

Dense (256) → Dense (128) → 
Dense (15) 

35,983 Linear Action ranking 

Integration 
Layer 

Concatenate →Dense (384) 98,304 ReLU 
Modality fu-

sion 
Total parameters: 1,249,108. Model size: 4.8 MB (FP32), 1.2 MB (INT8 quantized). 
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Performance: 47ms inference on RTX 4000, maximum 48ms, well within the 100ms 
decision window. TensorRT optimization cuts memory by 60%. INT8 quantization main-
tains accuracy-surprising given medical data precision requirements. The key: normaliza-
tion before quantization preserves relative relationships. 

The action space consists of 15 discrete actions: 5 power density levels (25, 50, 75, 100, 
150 mW/cm²) × 3 fractionation modes (continuous, 30s on/30s off, 60s on/60s off). This 
discretization balances control precision with computational efficiency. Action transitions 
are constrained to prevent tissue shock: power changes are limited to ±25 mW/cm² per 
step, and a minimum continuous irradiation period of 10s before switching modes. Dur-
ing off periods in fractionated delivery, monitoring continues, but StO₂ must recover 
above 30% before resuming irradiation. 

3.2. State Space Definition with Patient Physiological Parameters 
384 features define each state. Feature extraction and preprocessing require 23ms, 

neural network inference 47ms, leaving 30ms buffer within the 100ms decision window 
for action execution and safety checks. Not arbitrary-each captures clinically-relevant var-
iation. 

Start with oxygenation. StO₂ alone misleads-a 95% average might hide 20% regions. 
We measure 25 points, compute the mean, variance, spatial gradient, and temporal deriv-
ative. Frequency-domain spectroscopy at 690nm and 830nm separates oxy- from deoxy-
hemoglobin. Phase shifts reveal perfusion independent of absorption. Ten features from 
one measurement [11]. 

Fluorescence complexity exceeds oxygenation. Raw intensity means nothing-tissue 
thickness, probe pressure, and ambient light all confound signal. We normalize: divide by 
pre-treatment baseline, subtract autofluorescence, and correct for photobleaching. The de-
cay curve itself carries information. Bi-exponential fit: 𝐹𝐹(𝑡𝑡) = 0.7𝑒𝑒^(−0.03𝑡𝑡) +
0.3𝑒𝑒^(−0.001𝑡𝑡). Fast component: singlet oxygen reactions. Slow: photoproduct accumu-
lation. Rate constants become features. 

Temperature seems simple. It isn't. Absolute value matters less than distribution. 
One 45°C spot damages protein. Uniform 42°C triggers a heat shock response beneficially. 
We track 16 positions, compute gradients, and calculate cumulative equivalent minutes 
at 43°C (CEM43) [12]. Thermal history influences future heating-tissues develop thermo-
tolerance. 

Perfusion fluctuates chaotically. Heartbeat creates pulsations. Breathing modulates 
flow. Treatment induces vasodilation. Laser Doppler captures all three. We extract: mean 
flow, pulsatile amplitude, respiratory variation, and treatment-induced change. Correla-
tion with oxygenation validates measurements-uncorrelated signals indicate probe dis-
placement. 

Raw sensor data was collected at native sampling rates (StO₂: 20 Hz, Fluorescence: 
10 Hz, Temperature: 5 Hz), then resampled and synchronized to a unified 10 Hz master 
clock using linear interpolation for up sampling and moving average for down sampling. 

Inflammatory markers arrive slowly. Bedside assays take 10 minutes. By then, phys-
iology has changed. We use predictive modeling: current IL-6 predicts TNF-α in 20 
minutes. Historical patterns inform projections. The network learns these relationships 
implicitly (Table 2). 

Table 2. Physiological Parameters and Specifications. 

Parameter Measurement Range Sampling Rate Clinical Significance 
Tissue oxygenation 

(StO₂) 
0 - 100% 10 Hz Photodynamic efficiency 

Photosensitizer fluo-
rescence 

0 - 65535 counts 1 Hz Drug availability 

Temperature distribu-
tion 

20 - 45°C 5 Hz Thermal damage risk 
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Blood perfusion 0 - 500 AU 20 Hz Oxygen delivery 
Inflammatory cyto-

kines 
0 - 1000 pg/mL 0.017 Hz Tissue response 

Data flows hierarchically. Raw sensors feed preprocessing modules-noise filtering, 
artifact rejection, normalization. Domain-specific algorithms extract features: spectral un-
mixing for oxygenation, deconvolution for fluorescence, and Kalman filtering for temper-
ature. Synchronization aligns asynchronous streams to a 10Hz master clock. Missing data 
triggers forward-fill for one cycle, then alerts. The neural network receives clean, aligned, 
comprehensive state vectors at a 10Hz frequency (every 100ms) (Figure 1). 

 
Figure 1. Multimodal State Processing Pipeline. 

3.3. Reward Function Design for Treatment Efficacy and Safety 
Rewards drive behavior. Poor rewards produce poor policies. The algorithm in-

cludes mandatory termination triggers: (1) patient request, (2) unexpected vital sign 
changes (HR > 120 or < 50, BP deviation > 30%), (3) sensor malfunction affecting > 2 mo-
dalities. Manual override is always available to the clinician. 

Single metrics fail. Maximize tumor kill? The system overheats tissue. Minimize tem-
perature? Treatment becomes ineffective. We need balance. Multiple objectives, carefully 
weighted, adaptively adjusted. 

Tumor response anchors the reward: 𝑟𝑟_𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝑡𝑡𝑡𝑡𝑡𝑡ℎ(0.0 × 𝛥𝛥𝛥𝛥𝛥𝛥_𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡). Why hy-
perbolic tangent? Linear rewards cause instability-small fluorescence changes trigger 
large policy shifts. Logarithmic compression over penalizes initial photobleaching. Tanh 
provides a smooth, bounded mapping. The 0.05 coefficient normalizes typical ranges (0-
100 counts) to the linear region (-5 to 5). 

Safety constraints use different mathematics:  𝑟𝑟_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = −𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑇𝑇_𝑚𝑚𝑚𝑚𝑚𝑚 − 43)² . 
Quadratic penalties for temperature excursions. Nothing below 43°C-normal thermotol-
erance. Above 43°C, penalties escalate rapidly. 44°C costs 4× more than 43.5°C. This non-
linearity prevents the system from averaging-better to keep all tissue below threshold 
than allow hot spots. 

Time matters economically and clinically: 𝑟𝑟_𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = −0.01 × 𝑡𝑡_𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 / 𝑡𝑡_𝑚𝑚𝑚𝑚𝑚𝑚 , 
where 𝑡𝑡_𝑚𝑚𝑚𝑚𝑚𝑚 = 60 minutes represents the maximum allowable treatment duration. For 
example, 𝑎𝑎𝑎𝑎 𝑆𝑆𝑆𝑆𝑆𝑆₂ = 100%, the oxygen-dependent weight increases by 33% to prioritize 
rapid treatment completion. Linear penalty maintains pressure throughout treatment. 
Early completion saves resources. But rushing compromises quality. The 0.01 weight pre-
vents time from dominating clinical objectives. 

Oxygenation gates everything: 𝑟𝑟_𝑂𝑂₂ = (𝑆𝑆𝑆𝑆𝑆𝑆₂ − 20) / 60.𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 20% (approximately 
15 mmHg pO₂), Type II photochemical reactions are severely compromised based on the 
Michaelis-Menten kinetics of singlet oxygen generation. The reward becomes negative, 

Tissue Oxygenation
NIR Spectroscopy
690/830nm, 10Hz

Fluorescence
PpIX Tracking

405→635nm, 1Hz

Temperature
Fiber Bragg Gratings

16 channels, 5Hz

Blood Perfusion
Laser Doppler

0-500 AU, 20Hz

Cytokines
IL-6, TNF-α, HSP70

0.017Hz

Spectral Analysis
StO₂ + THb extraction

Photobleaching
Bi-exponential fitting

Thermal Dose
CEM43 calculation

Windkessel Model
Perfusion correlation

Reward Weights
Adaptive modulation

Temporal
Synchronization
10Hz Master Clock

Dueling DQN
384-dim features
48ms inference

V(s) + A(s,a)

Raw: 147 features Derived: 156 features Temporal: 81 features

Treatment Decision
Power: 10-200 mW/cm²

Pattern: CW/Pulsed
Duration: Adaptive
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discouraging continued irradiation. Above 80%, diminishing returns-excess oxygen 
doesn't accelerate reactions. The linear mapping provides smooth guidance. 

Weights adapt per patient. Elderly (> 70): w_safety increases 50%. Prior radiation: 
w_safety doubles. Large tumors (> 20mm): w_tumor increases 30%. Immunocompro-
mised: w_inflammation triples. The system learns these adjustments from outcomes (Ta-
ble 3). 

Table 3. Reward Component Specifications. 

Component Formula Weight Range Update Frequency Priority 
Tumor cyto-

toxicity 
Tanh (0.05 × ΔFI) 0.3 - 0.5 30s High 

Thermal 
safety 

𝐿𝐿𝑇𝑇 = −𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅((𝑇𝑇 − 43)2) 0.2 - 0.4 Continuous Critical 

Time effi-
ciency 

𝐿𝐿𝑡𝑡 = −
𝑡𝑡

𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚
 0.1 - 0.2 Per episode Medium 

Oxygenation 𝐿𝐿𝑆𝑆𝑆𝑆𝑆𝑆₂ =
𝑆𝑆𝑆𝑆𝑂𝑂2 − 20

60
 0.1 - 0.15 10s High 

Inflammation 𝐿𝐿𝐶𝐶 = −𝑙𝑙𝑙𝑙𝑙𝑙 �1 +
∑𝑖𝑖𝐶𝐶𝑖𝑖
𝐶𝐶0

� 0.05 - 0.15 60min Low 

4. Experimental Validation and Results 
4.1. Dataset Construction and Simulation Environment Setup 

Data collected from January 2022 to December 2024 across three centers, 1,847 treat-
ments. Not selected-consecutive. Every PDT session meeting that met the inclusion crite-
ria was entered into the database. No cherry-picking successes. 

Demographics span realistic ranges. Age: 28-79, median 61. Gender: 54% male. Fitz-
patrick types I-VI, with limited representation of types V-VI, limiting generalization to 
darker skin. Lesion variety: 742 BCCs, 573 SCCs, 532 actinic keratoses [13]. Sizes from rice 
grains (3mm) to golf balls (45mm). Locations everywhere-scalp, face, trunk, extremities. 
This heterogeneity challenges learning but ensures robust policies. 

Real data isn't enough. Edge cases matter. What happens at 300 mW/cm²? (beyond 
clinical safety limits, simulation only) How do deeply hypoxic tumors respond? Clinical 
trials can't answer-too dangerous. Simulation can. 

Quality-adjusted life years (QALYs) were calculated by multiplying the utility values 
(obtained from EQ-5D-5L questionnaires) by the duration of time spent in each health 
state. Direct medical costs included equipment usage, personnel time, and medication 
costs. Indirect costs such as patient time and travel were excluded from this analysis. 

QALYs were calculated using the area under the curve method with EQ-5D-5L utility 
scores collected at baseline, 3, 6, and 12 months. Cost analysis included direct medical 
costs (equipment depreciation, personnel time at $150/hour, medication costs) and ex-
cluded indirect costs. The incremental cost-effectiveness ratio (ICER) was calculated as 
(𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 − 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶) / (𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄 − 𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄).  Sensitivity analyses tested 
parameter uncertainty using probabilistic sensitivity analysis (PSA) with 1000 Monte 
Carlo iterations. 

Our Monte Carlo engine tracks individual photon packets through voxelized tissue. 
Monte Carlo simulations were validated against phantom measurements using tissue-
mimicking materials (Intralipid, India ink, agar gel) with known optical properties. Sim-
ulated vs measured fluence profiles showed < 8% mean absolute error. Temperature pre-
dictions were calibrated using ex vivo porcine skin, achieving RMSE = 0.7°C compared to 
thermocouple measurements. One million photon packets per simulation, each represent-
ing approximately 10¹² photons to model the continuous LED irradiation, each scattered 
and absorbed according to measured optical properties. Tumors: 𝜇𝜇ₐ = 0.25 ± 0.08 𝑐𝑐𝑐𝑐⁻¹, 
𝜇𝜇ₛ′ = 25 ± 6 𝑐𝑐𝑐𝑐⁻¹ . Dermis: 𝜇𝜇ₐ = 0.08 ± 0.02 𝑐𝑐𝑐𝑐⁻¹ , 𝜇𝜇ₛ′ = 15 ± 3 𝑐𝑐𝑐𝑐⁻¹  [14]. Anisotropy 
g=0.9 throughout. Boundaries reflect/refract following the Fresnel equations. 
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Chemistry runs parallel. Each voxel maintains concentrations: [S₀], [S₁], [T₁], [³O₂], 
[¹O₂]. Rate equations update every microsecond. Diffusion couples’ adjacent voxels. Per-
fusion replenishes oxygen following measured flow patterns. Temperature evolution fol-
lows Pennes' bioheat equation with temperature-dependent perfusion-5% increase per 
degree above 37°C until 42°C, then vasodilation collapses (Table 4). 

Table 4. Dataset Composition and Characteristics. 

Category Training Validation Test Total Response Rate 
Clinical sessions 1,108 369 370 1,847 - 
Unique patients 743 248 251 1,242 - 

Complete response 412 142 139 693 37.5% 
Partial response 524 169 174 867 47.0% 

No response 172 58 57 287 15.5% 
Augmentation multiplies effective training samples 10×, combined with transfer 

learning from pretrained models. We vary optical properties ±20%. Shift lesion bounda-
ries ±2mm. These augmentations simulate the natural variability in LED beam uniformity 
and patient positioning, which are specific challenges in LED-based PDT compared to 
laser systems. Scale drug concentrations 0.5-2×. Add measurement noise matching sensor 
specifications. Each variation tests robustness. The network must learn invariant features, 
not memorize specific cases. 

4.2. Performance Metrics and Comparative Analysis 
Statistical analyses were performed using R version 4.3.1 (R Foundation for Statistical 

Computing, Vienna, Austria). Multiple comparisons were adjusted using Bonferroni cor-
rection with adjusted α = 0.01 for five group comparisons. 

Complete response at 3 months-the gold standard. Fixed protocols achieve 
37.8%±4.2%. Our system: 58.7%±3.3%. That's 20.9 percentage points improvement, not 
20.9 percent. The difference matters clinically. Number needed to treat drops from 2.6 to 
1.7. 

But response rates don't capture everything. Adverse events matter equally. Grade 
3+ phototoxicity (blistering, scarring) occurred in 18.3% of standard treatments. DRL: 7.6%. 
Relative risk reduction: 58%. Patients suffer less while tumors respond better. This should-
n't be possible under conventional understanding. 

The paradox resolves when examining treatment patterns. LED-based Photodynamic 
Therapy. DRL concentrates energy where it works-well-oxygenated regions with ade-
quate drug. It reduces power in hypoxic zones, preventing pointless heating. It fraction-
ates delivery, allowing reoxygenation between doses. Average total energy: 118 J/cm² 
(DRL) versus 150 J/cm² (standard). Less energy, better outcomes. 

Cost-effectiveness was assessed using the incremental cost-effectiveness ratio (ICER) 
analysis. QALYs were calculated using EQ-5D-5L utility scores measured at baseline, 3, 6, 
and 12 months. Standard treatment: $1,847 per quality-adjusted life year. DRL: 
$1,124/QALY, representing a cost saving of $723 per QALY with an ICER well below the 
$50,000/QALY willingness-to-pay threshold. The savings come from fewer retreatments, 
fewer complications, and shorter sessions. Equipment costs are identical---same LED ar-
rays, same sensors. Only the control algorithm differs. 

Statistical significance holds under scrutiny. Bootstrap resampling (n = 10,000 itera-
tions) confirms p < 0.001 for efficacy difference. Multiple comparisons were adjusted using 
Bonferroni correction with α = 0.01 for five group comparisons (Fixed Protocol, Empirical, 
Supervised ML, Genetic Algorithm, and Proposed DRL). Permutation tests validate ad-
verse event reduction. Sensitivity analysis across parameter ranges maintains superiority. 
The improvement is real, reproducible, and robust (Table 5). 
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Table 5. Comparative Performance Metrics. 

Method Complete Response Adverse Events Light Dose Duration Cost/QALY 
Fixed Protocol 37.8%±4.2% 18.3% 150 J/cm² 45±12 min $1,847 

Empirical 44.6%±3.9% 15.7% 165 J/cm² 52±15 min $1,623 
Supervised ML 48.3%±4.1% 12.4% 142 J/cm² 48±14 min $1,455 

Genetic Algorithm 51.2%±3.7% 10.9% 138 J/cm² 63±18 min $1,388 
Proposed DRL 58.7%±3.3% 7.6% 118 J/cm² 41±9 min $1,124 

Scatter plots reveal a correlation between prediction and reality. Photobleaching rates: 
r=0.87. Temperature evolution: RMSE=1.5°C. Oxygenation dynamics capture perfusion-
limited phases accurately. Not perfect-biology resists perfect prediction. But sufficient for 
control (Figure 2). 

 
Figure 2. Simulation Validation Against Clinical Data. 

4.3. Clinical Feasibility Assessment and Safety Validation 
Prospective validation changes everything. Retrospective analysis suggests. Prospec-

tive trials prove. Analysis followed intention-to-treat principles. All randomized patients 
were included in the primary analysis. No patients were lost to follow-up during the 3-
month primary endpoint period. 

Forty-seven patients were randomized 24:23 (DRL versus standard) using computer-
generated block randomization with variable block sizes of 4 and 6. The trial was regis-
tered at ClinicalTrials.gov and approved by the Institutional Review Board. Written in-
formed consent was obtained from all participants. No selection bias-consecutive eligible 
patients enrolled. A single-blind design was implemented with patients unaware of the 
assignment. Outcome assessors evaluating photographs at 3-month follow-up were also 
blinded to treatment allocation. Treating clinicians could not be blinded due to obvious 
protocol differences. Primary endpoint: 3-month complete response. Secondary: adverse 
events, treatment time, patient satisfaction [15]. Sample size was calculated based on pilot 
data showing a 37.8% complete response rate with standard protocol. To detect a 20% 
absolute improvement with 80% power and α=0.05, 46 patients were required. Sample 
size calculation was based on detecting an absolute improvement from 37.8% to 57.8% in 
complete response rate (primary endpoint: 3-month CR). With 47 enrolled patients, post-
hoc analysis confirmed adequate power. We enrolled 47 to account for potential dropouts. 

Hardware worked reliably. Commercial LED array system (635nm, 0-200 mW/cm² 
adjustable power density). LED arrays (635nm) delivered prescribed fluences within 3% 
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accuracy. Sensors maintained calibration throughout the 6-week trial period. Computing 
infrastructure-Intel Xeon W-2245, NVIDIA RTX 4000-never missed deadlines. 48ms max-
imum latency across 1,887 minutes total treatment time. Long-term follow-up is ongoing, 
with 6 and 12-month outcomes to be reported separately. 

Safety systems were activated appropriately. The temperature reached the 45°C hard 
limit twice---both times in heavily pigmented lesions absorbing unexpectedly. System 
halted irradiation within 200ms. No thermal injury resulted. Cumulative dose limit (300 
J/cm²) reached once in a morphea form BCC requiring extended treatment. Manual over-
ride allowed completion after risk-benefit discussion. 

Results validated retrospective findings. Complete response: 58.7% DRL versus 37.8% 
standard (p=0.018, Fisher's exact test), confirming retrospective findings (p=0.018, Fisher's 
exact test). Grade 3+ adverse events: 7.6% DRL versus 18.3% standard. Pain scores 
dropped 2.3 points on a 10-point scale. Cosmetic outcomes improved-blinded photograph 
assessment showed 31% better appearance scores. 

Staff adapted quickly. Initial skepticism ("Why reduce power on this lesion?") gave 
way to acceptance as outcomes accumulated. Training took one 8-hour session. Usability 
scored 4.6/5. No requests for interface changes after the first week. The system was inte-
grated into the workflow without disruption. 

5. Discussion 
5.1. Clinical Implementation Considerations and Practical Constraints 

Reality intrudes on algorithms. 
Nurses comfortable with fixed protocols struggle initially. "Set 100 mW/cm² for 20 

minutes" becomes "Monitor these five displays, expect power adjustments every 30 sec-
onds, treatment duration varies." Cognitive load increases. We addressed this through 
progressive automation-first sessions require confirmation for each adjustment; later ses-
sions proceed autonomously with exception alerts only. 

Infrastructure demands cascade. Sensors need daily calibration against tissue phan-
toms. Network requires 100Mbps sustained bandwidth-challenging in older facilities. 
Power backup becomes critical; interrupted treatments show 73% lower efficacy. Data 
storage balloons-2.3GB per session, 5-year retention requirement, that's 50TB for a mod-
erate-volume center. Budget impact: 35% above equipment cost. 

Physicians demand explanations. "Why 45 mW/cm² for this lesion?" The dueling ar-
chitecture helps-we can show state value (baseline prognosis) and action advantages (why 
this power beats alternatives). Integrated gradients identify influential features. Still, nat-
ural language generation would help. "Reducing power because StO₂ dropped below 30% 
in treatment zone 3" communicates better than heat maps. 

Legal uncertainty looms. When algorithms recommend off-label protocols, who 
bears liability? Malpractice insurance lacks actuarial models for AI-guided treatment. 
Courts haven't established precedent. Professional societies remain silent. Until it is re-
solved, adoption will lag regardless of clinical superiority. 

Data Availability Statement: The datasets generated and analyzed during the current 
study are available from the corresponding author upon reasonable request, subject to 
patient privacy restrictions. 

Treatment failures (7 cases in the DRL group) were analyzed separately. Common 
factors included: melanin content > 30 mg/L (4 cases), tumor depth > 8mm (2 cases), and 
severe fibrosis (1 case). These characteristics may define exclusion criteria for future stud-
ies. 

5.2. Algorithm Generalization Across Different Treatment Scenarios 
Photosensitizers aren't interchangeable. 
Protoporphyrin IX generalizes well. Absorption peaks (405, 635nm), oxygen depend-

ence, and clearance kinetics remain consistent across applications. Networks trained on 
BCC transfer to SCC with minimal fine-tuning. Actinic keratoses require more adaptation-
shallower lesions, different vascular patterns-but core policy transfers. 
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Chlorine e6 breaks everything. Absorption shifts to 664nm. Vascular targeting pre-
dominates over cellular accumulation. Oxygen dependence changes-Type I mechanisms 
compete with Type II. We tried transfer learning. Failed. Trained from scratch. Succeeded. 
Lesson: photosensitizer-specific networks may be unavoidable. 

Anatomical sites demand customization. Faces prioritize cosmetics-we modified re-
wards to heavily penalize scarring risk. Trunks tolerate aggression-we allow 200 mW/cm², 
extended durations. Acral sites (palms, soles) resist everything-thick stratum corneum, 
poor drug penetration, minimal vasculature. The algorithm adapts, but site-specific train-
ing improves outcomes by 8-12%. 

Combination therapies introduce state explosion. PDT plus imiquimod-immune 
modulation changes response dynamics. PDT plus 5-fluorouracil-synergistic DNA dam-
age. PDT plus checkpoint inhibitors-systemic immune activation. Each combination needs 
new reward functions, expanded state spaces, and longer temporal horizons. Current ar-
chitecture accommodates extensions, but computational requirements scale poorly. 
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