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Abstract: Over-constrained mechanisms are widely applied in precision equipment due to their 
high stiffness and accuracy, yet their complex constraint relationships pose significant challenges 
for error modeling and motion performance prediction. In this study, we propose a data-driven 
approach that integrates finite element simulation with deep learning to address these issues. A 
dataset containing 12,000 groups of assembly error-response pairs was constructed through numer-
ical simulation and experimental sampling. A convolutional neural network was developed to cap-
ture the nonlinear mapping between error distributions and kinematic responses. The proposed 
model achieved a mean squared error of 0.015 mm in motion deviation prediction, representing a 
43% reduction compared to conventional analytical methods. Under complex loading conditions, 
the model successfully identified potential failure states with an accuracy of 91%, outperforming 
baseline finite element and analytical approaches in both precision and computational efficiency. 
Furthermore, the feature extraction analysis revealed that joint clearance and contact stiffness col-
lectively contributed to over 50% of the variance in end-effector deviations, confirming the physical 
interpretability of the learned representations. These results demonstrate that the proposed frame-
work effectively balances accuracy, efficiency, and interpretability, providing a promising tool for 
tolerance allocation, assembly quality evaluation, and health monitoring of overconstrained mech-
anisms. 
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1. Introduction 
Overconstrained mechanisms have been widely applied in aerospace, precision man-

ufacturing, and advanced inspection equipment owing to their high stiffness and accu-
racy [1]. Compared with conventional mechanisms, they provide redundant support in a 
limited space, thereby enhancing structural stability and positioning precision [2]. Never-
theless, the complex geometric features and constraint relationships significantly compli-
cate error modeling and kinematic analysis [3]. Error accumulation during assembly and 
operation frequently leads to performance degradation [4,5]. Traditional research has pri-
marily relied on analytical methods, such as vector loop modeling and Jacobian expansion, 
to establish error propagation models. These approaches can capture the effect of errors 
under specific conditions [6,7]. However, as the number of constraints and degrees of free-
dom increases, analytical models often suffer from computational complexity and strong 
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parameter coupling, which reduces their accuracy and applicability [8]. Finite element 
analysis (FEA) can describe error transmission more comprehensively, but it is computa-
tionally expensive and unsuitable for real-time monitoring or iterative design optimiza-
tion [9]. In recent years, data-driven and machine learning techniques have been intro-
duced into the error modeling and performance prediction of constrained mechanisms. 
Convolutional neural networks (CNNs), recurrent neural networks (RNNs), and graph 
neural networks (GNNs) have been employed to extract nonlinear features and construct 
mappings between high-dimensional inputs and multiple outputs [10,11]. For instance, 
CNN-based methods have been used to capture error distribution features and improve 
deviation prediction, while deep reinforcement learning has enabled adaptive mechanism 
optimization under varying operating conditions [12,13]. Moreover, ensemble learning 
and transfer learning have enhanced model generalization in small-sample or cross-mech-
anism scenarios [14]. These studies demonstrate that intelligent models provide strong 
potential for error analysis in high-dimensional constrained systems. Despite these ad-
vances, current research remains limited. Most studies focus on a single mechanism or 
specific conditions, lacking large-scale datasets and cross-mechanism generalization [15]. 
In addition, error modeling and performance prediction are often addressed separately, 
without a unified framework to reveal the coupled relationship between error propaga-
tion and performance degradation. Furthermore, deep learning models under complex 
loading conditions and failure scenarios are still constrained by the "black-box" nature of 
purely data-driven approaches, which limits their applicability in safety-critical engineer-
ing contexts [16]. 

To address these issues, this study proposes a deep learning-based framework for 
error modeling and motion performance prediction of overconstrained mechanisms. A 
dataset comprising 12,000 assembly error samples was constructed by integrating FEA 
with experimental data. A CNN was used to build a nonlinear mapping between error 
distributions and kinematic responses. Experimental validation demonstrated a mean 
squared error of 0.015 mm in predicting motion deviation, representing a 43% improve-
ment compared with conventional analytical models. Under complex loading conditions, 
the proposed method predicted potential failure states in advance with an accuracy of 
91%. This work not only alleviates the challenges of error modeling in overconstrained 
mechanisms but also offers a data-driven solution for design optimization and health 
monitoring in precision engineering. Furthermore, insights from other complex systems 
and disciplines, such as software process optimization, educational methodology, and 
digital-age risk management, suggest that structured, data-driven, and adaptive ap-
proaches can significantly enhance system performance and predictive capabilities [17-
22]. 

2. Materials and Methods 
2.1. Dataset and Sample Construction 

To build the error-kinematics prediction model of overconstrained mechanisms, a 
total of 12,000 assembly error-motion response samples were collected from finite element 
simulations and physical experiments. Each sample included an input assembly error vec-
tor (such as node displacement, rod length tolerance, and angular error) and the corre-
sponding output kinematic response (displacement deviation, posture error, and joint re-
action force). During dataset construction, different load distributions and boundary con-
ditions were considered to ensure coverage of common application scenarios. The dataset 
was divided into training, validation, and test sets in a ratio of 8:1:1 to ensure fairness in 
model training and generalization evaluation. 

2.2. Deep Learning Modeling Method 
A convolutional neural network (CNN) was used as the nonlinear modeling tool to 

capture the complex mapping between assembly error distributions and kinematic re-
sponses. The input error tensor is defined as E∈Rn×m, and the output kinematic response 
vector is defined as R∈Rk. The prediction function is expressed as: 
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R�=fθ(E) 
Here, fθ  denotes the CNN model with parameters θ. The training process used 

mean squared error (MSE) as the loss function: 

L=
1
N�‖

N

i=1

Ri-R�i‖
2 

The Adam optimizer was applied with an initial learning rate of 0.001, a batch size 
of 64, and a maximum of 300 iterations. Training was performed on a GPU platform to 
ensure efficient convergence on the large-scale dataset. 

2.3. Comparative Experiments and Performance Verification 
To evaluate the effectiveness of the proposed method, three types of comparative 

experiments were conducted: (1) a traditional analytical model, where error propagation 
was derived using the vector loop method and Jacobian matrix; (2) a finite element 
method, in which a three-dimensional model was developed in Abaqus for error-kine-
matics coupling analysis; (3) the proposed deep learning model. Under the same assembly 
error inputs, the three methods were compared in terms of motion deviation prediction 
accuracy and computational efficiency. The test data included single-load, multi-load, and 
complex conditions to verify the stability of the model across different application envi-
ronments. 

2.4. Quality Control and Experimental Repeatability 
To ensure the reliability of the data and results, several levels of quality control were 

applied. First, in the finite element stage, 10% of the simulation results were manually 
checked and compared with analytical solutions to confirm the correctness of the input-
output relationships. Second, in the experimental stage, each type of assembly error sam-
ple was tested at least five times. The mean values were calculated, and outliers beyond 
three standard deviations were removed. Finally, in the performance evaluation stage, 
cross-validation and standard deviation statistics were used to ensure the robustness and 
repeatability of the model results. This process guaranteed the accuracy of the data 
sources and the scientific basis of experimental validation, providing reliable support for 
the robustness of the proposed model. 

3. Results and Discussion 
3.1. Error Propagation Framework and Identification of Dominant Factors 

As shown in Figure 1, the analysis was first carried out at the branch level, where 
factors such as joint clearance and platform deformation were mapped into equivalent 
contributions to the end-effector pose deviation. Within each branch loop, error channels 
were updated using threshold and extremum criteria. The aim of this process was to de-
compose the complex over-constrained coupling into a two-level propagation of "intra-
branch determination and inter-branch synthesis." This allowed the CNN to learn the non-
linear mapping from the equivalent error field to motion response, rather than the com-
plete mechanical derivation. As a result, the learning difficulty and the risk of overfitting 
were reduced. Sensitivity statistics on 12,000 samples showed that the combined effect of 
joint clearance and contact stiffness accounted for 53% ± 4% of the variance in end dis-
placement. This was followed by rod length tolerance (about 28%) and platform bending 
(about 15%). These findings were consistent with the channel weights in Figure 1, specif-
ically the path "clearance/contact → equivalent stiffness → end deviation," confirming that 
the framework correctly captured the dominant factors. 
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Figure 1. Error propagation framework of over-constrained mechanisms considering joint clearance 
and platform deformation. 

3.2. Prediction Accuracy, Efficiency, and Baseline Comparison 
On the test set, the mean squared error of the model for end-motion deviation was 

0.015 mm, which was 43% lower than that of the analytical propagation model. Compared 
with finite element solutions under individual conditions, the inference time was reduced 
by more than one order of magnitude (milliseconds vs. seconds), meeting the require-
ments for online evaluation. Layered statistical analysis indicated that under small clear-
ance and single-axis loads, the differences among the three methods were minor. How-
ever, when the clearance exceeded 50 μm or under combined loading, the analytical 
model systematically underestimated the deviation (mean bias about 0.021-0.034 mm), 
while the CNN maintained a stable error upper bound (95th percentile < 0.05 mm). These 
results demonstrate that the deep model alleviated the error amplification caused by non-
linear contact and constraint coupling, while also achieving efficiency suitable for engi-
neering use. 

3.3. Feature Extraction Process and Interpretability Verification 
Figure. 2 shows the layer-by-layer extraction process from the original error field to 

multi-level feature maps (M1-M4/A1-A2). Shallow features mainly responded to local ge-
ometric deviations and single-point clearances, appearing as sparse bright patches. With 
increasing depth, the features gradually developed into strip-like and block-like aggrega-
tions along the constraint chains, reflecting "channel fusion" associated with multi-branch 
coupling and shifting contact regions. In the M4 layer (red box area), a stable high-energy 
band appeared, which matched the "platform-branch" coupling zone observed in experi-
ments. Occlusion and zero-masking tests applied to this layer caused the output error to 
increase by 26% ± 3%, indicating that the model relied on physically relevant coupling 
regions as key evidence. Further ablation experiments showed that removing cross-chan-
nel aggregation increased the mean squared error to 0.021 mm, confirming that multi-
scale and multi-channel fusion was essential for capturing over-constrained coupling. 
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Figure 2. Feature extraction process of the CNN model from raw error data to high-level represen-
tations. 

3.4. Failure Warning and Robustness under Complex Conditions 
Under combined loads, random clearance distributions, and measurement noise (3-

5% Gaussian disturbance), threshold-based warning evaluation was performed. When the 
end deviation exceeded the process limit, the model achieved 91% accuracy, an AUC of 
0.92, and an F1 score of 0.88. False alarms mainly appeared in boundary cases (deviations 
close to the threshold ±0.005 mm), while missed alarms were concentrated in the extreme 
combination of "soft contact, small clearance, and high external load." After applying dis-
tributionally robust training and uncertainty estimation (Monte Carlo dropout), the con-
fidence calibration of boundary samples improved significantly, with ECE reduced from 
4.7% to 2.1%. These results indicate that, in engineering applications, confidence intervals 
can be combined with graded warnings and manual review to reduce misclassification 
risk. 

3.5. Engineering Significance, Limitations, and Outlook 
The proposed combination of "physics-guided decomposition (Figure. 1) and deep 

feature aggregation (Figure. 2)" achieved a good balance among accuracy, efficiency, and 
interpretability. It is suitable for tolerance allocation, assembly quality assessment, and 
online health monitoring of over-constrained mechanisms. However, the training data 
mainly covered typical topologies and elastic contact, without fully including factors such 
as friction hysteresis, material nonlinearity, and thermal drift. In addition, cross-topology 
transfer still requires a small amount of retraining. Future work will introduce physics-
informed loss functions and uncertainty propagation to enable hybrid analytical-data 
modeling, extend the method to scenarios with friction or intermittent contact, and con-
duct long-term online validation across multiple platforms. These steps will help to de-
velop solutions that can be applied in industrial production lines. 

4. Conclusion 
This study proposes a combined method of finite element data collection and deep 

learning modeling to address the difficulties in error modeling and motion performance 
prediction of over-constrained mechanisms. A dataset of 12,000 assembly error samples 
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was built, and a convolutional neural network was used to establish the nonlinear map-
ping between assembly errors and kinematic responses. The method achieved high pre-
diction accuracy, with a mean squared error of 0.015 mm, which is about 43% lower than 
that of traditional analytical methods. Under complex loading conditions, the model ef-
fectively captured nonlinear coupling features and reached 91% accuracy in predicting 
potential failure states. These results provide reliable support for the design and health 
monitoring of high-precision equipment. The main contributions of this work are: (1) a 
modeling framework that combines physics-based constraint decomposition with deep 
learning feature fusion, which improves prediction accuracy and efficiency; (2) a unified 
data-driven model that links error propagation, kinematic response, and failure warning, 
overcoming the limitations of traditional methods that involve high computational cost 
and poor applicability; and (3) experimental and comparative validation that demonstrate 
the method achieves a balance of real-time performance, accuracy, and interpretability, 
creating a foundation for broader application of over-constrained mechanisms. However, 
this study also has limitations. First, the training data mainly come from typical topologies 
and finite element simulations, and do not fully cover factors such as material nonlinearity, 
friction hysteresis, and environmental disturbances. Second, the model's transfer ability 
across different topologies still requires further validation, since some retraining may be 
necessary for different types of over-constrained mechanisms. Third, although the failure 
prediction accuracy is high, there is still some uncertainty for samples close to critical 
thresholds. Future work will focus on expanding the dataset to include multi-physics cou-
pling and complex conditions, introducing physics-informed neural networks or inter-
pretability mechanisms to improve model reliability and explainability, and conducting 
long-term online validation in real equipment to test the method's potential in real-time 
monitoring and intelligent maintenance. In conclusion, this study provides not only a new 
approach for error modeling and performance prediction of over-constrained mecha-
nisms, but also new directions for their engineering application in design optimization 
and health monitoring of precision equipment. 
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