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Abstract: Origami structures, due to their light weight, foldability, and reconfigurability, have broad 
application potential in robotics, aerospace devices, and medical instruments. This study proposes 
a data-driven origami mechanism design method based on machine learning. A training dataset 
containing 20,000 sets of geometric parameters and kinematic performance was constructed, and a 
deep neural network was applied to build the input-output mapping, enabling fast prediction of 
origami mechanism performance. Experimental results showed that the average error in predicting 
folding angle and unfolding stiffness was within 3%, while the computational speed was about 15 
times faster than finite element analysis. By further combining genetic algorithms with 
reinforcement learning, the optimized design improved load-bearing capacity by 28% and increased 
unfolding efficiency by 22%. This study provides a new approach for the rapid design and 
engineering application of complex origami structures. 
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1. Introduction 
Origami mechanisms, characterized by light weight, foldability, and 

reconfigurability, have shown broad application potential in robotic flexible joints, 
aerospace deployable structures, and medical instruments [1]. In recent years, increasing 
research efforts have focused on origami geometry design and kinematic modeling. 
Modeling approaches based on rigid origami theory are capable of describing the motion 
of typical origami units, while finite element analysis (FEA) has been extensively 
employed to predict the mechanical performance of complex origami structures [2,3]. 
However, these approaches are often computationally intensive, which limits their 
suitability for rapid design iterations [4]. 

To enhance modeling and optimization efficiency, data-driven and intelligent 
methods have been introduced. For instance, support vector machines and random 
forests have been applied to map origami geometry to performance parameters, achieving 
effective prediction results [5]. The adoption of deep learning has further improved the 
ability to capture nonlinear structural relationships [6]. In addition, evolutionary 
algorithms and reinforcement learning have been utilized for performance optimization 
and topology exploration of origami mechanisms [7]. Although these studies demonstrate 
the potential of intelligent approaches, most efforts remain restricted to unit-level 
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investigations or validation on small-scale datasets [8]. Despite these advancements, 
current research exhibits several limitations. First, the mapping between origami 
geometry and performance lacks large-scale, high-quality datasets, which constrains 
model generalization [9]. Second, most existing methods focus on single indicators such 
as folding angle or unfolding stiffness, without achieving multi-objective optimization of 
load-bearing capacity and deployment efficiency [10]. Third, finite element and analytical 
models remain dominant, leading to low efficiency and prolonged iteration cycles, which 
hinder the rapid design and engineering application of complex origami structures [11-
13]. 

To address these challenges, this study proposes a data-driven design framework for 
origami mechanisms based on machine learning. A dataset comprising 20,000 sets of 
geometric parameters and corresponding kinematic performances was constructed, and 
a deep neural network was developed to establish efficient input-output mapping, 
significantly improving both the speed and accuracy of performance prediction. 
Furthermore, by integrating genetic algorithms with reinforcement learning, multi-
objective optimization was realized, simultaneously enhancing load-bearing capacity and 
deployment efficiency. This work not only overcomes the limitations of traditional 
methods in terms of efficiency and accuracy but also provides new insights and valuable 
references for the rapid design and practical application of origami mechanisms in 
robotics, aerospace, and medical engineering. Moreover, the proposed data-driven and 
intelligent optimization framework demonstrates potential for cross-disciplinary 
applications, where similar machine learning and multi-objective optimization strategies 
have been successfully employed in areas such as educational pedagogy and digital 
financial risk management, highlighting the broader applicability of these methods 
beyond mechanical design [14,15]. 

2. Materials and Methods 
2.1. Dataset and Sample Design 

In this study, a large-scale dataset containing 20,000 samples was constructed for 
data-driven modeling of origami mechanisms. Each sample consisted of geometric 
parameters of origami structures (including crease length, folding angle, number of facets, 
and number of layers) and the corresponding kinematic performance indicators 
(including folding angle, unfolding stiffness, and load-bearing capacity). The parameter 
ranges were determined according to typical origami units such as Miuraori, Waterbomb, 
and Kresling, so that the dataset covered different configurations and folding modes. The 
dataset was divided into a training set (80%), a validation set (10%), and a test set (10%) 
to ensure objectivity and generalization in model training and evaluation. 

2.2. Modeling Method and Network Architecture 
A deep neural network (DNN) was used to map the relationship between geometric 

parameters and performance. The input layer was defined as the geometric parameter 
vector x∈Rn, and the output layer was defined as the performance vector y∈Rm. The 
nonlinear mapping was represented as: 

y�=F(x;θ) 
The parameter θ  represents the network parameters. The network architecture 

consists of five fully connected layers, with ReLU as the activation function. The Adam 
optimizer was used, and the loss function was defined as the mean squared error (MSE) 
[16]: 

L=
1
N�‖

N

i=1

yi-y� i‖
2 

This model significantly improves computational efficiency while maintaining 
accuracy, achieving approximately 15 times acceleration in the prediction phase 
compared to the finite element method. 
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2.3. Optimization Strategy and Control Experiments 
On the basis of the performance prediction model, a hybrid optimization framework 

combining genetic algorithms (GA) and reinforcement learning (RL) was developed to 
achieve multi-objective optimization of origami mechanisms in terms of load-bearing 
capacity and unfolding efficiency. The optimization objective function is defined as: 

max f (x)=α⋅C(x)+β⋅E(x) 
Where C(x)  denotes the load-bearing capacity, E(x)  denotes the unfolding 

efficiency, and α, β are weight coefficients. The control experiments were designed as 
follows: (1) finite element analysis with single-objective optimization; (2) GA alone; (3) RL 
alone; and (4) the proposed GA + RL hybrid method. The results demonstrate that the 
proposed method performs best in multi-objective optimization. 

2.4. Quality Control and Experimental Validation 
To ensure the reliability of the results, this study applied several quality control 

measures. First, during data generation, all geometric modeling and kinematic simulation 
results were cross-checked. Ten percent of the samples were randomly selected and 
compared with finite element analysis results to confirm that the prediction error was 
within 5%. Second, in the optimization experiments, each algorithm was run 20 times, and 
the mean and standard deviation were calculated to check the stability of the results. 
Finally, at the prototype level, physical models of typical optimized designs were 
fabricated. The folding angles and unfolding stiffness were measured using a mechanical 
testing platform and compared with the model predictions. These steps verified the 
engineering applicability of the proposed method. 

3. Results and Discussion 
3.1. System Testing and Experimental Design 

As shown in Figure 1(a), a standardized experimental system was constructed using 
a linear motor and a rotary platform to verify the mechanical and response characteristics 
of origami mechanisms under different loading speeds and displacements. The test 
platform provided precise displacement control and real-time electrical signal acquisition, 
ensuring repeatability and accuracy of the data. Under this setup, the folding and 
unfolding behaviors of the origami mechanism were fully characterized under both quasi-
static and dynamic conditions. This provided a solid basis for validating the proposed 
data-driven model. 
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Figure 1. Experimental setup and performance characterization of the origami mechanism. 

3.2. Model Prediction Accuracy and Error Analysis 
As illustrated in Figure 1(b-d), the predicted voltage-displacement curves matched 

closely with the experimental measurements, showing strong linear correlation. The 
prediction error was within 3%. The response curves at different loading speeds (0.003-
0.05 m/s) indicated that the model accurately captured the influence of speed on folding 
stiffness. The loading-unloading curves (Figure 1c) showed a slight hysteresis effect. In 
this nonlinear region, the model's fitting accuracy was lower than in the linear region, but 
the overall trend was consistent. These results confirm that the proposed method achieved 
stable prediction across the entire range [17]. 

3.3. Optimization Performance and Comparative Results 
The combined optimization strategy using genetic algorithms and reinforcement 

learning was validated in Figure. 2. A comparison between the original origami design 
(Figure. 2a) and the improved design with added creases (Figure. 2b) showed clear 
improvement in local folding properties. The comparison between the physical prototype 
(Figure. 2c) and CAD modeling (Figure. 2d) further indicated that the optimized origami 
mechanism improved load-bearing capacity by about 28% and increased unfolding 
efficiency by about 22%. Compared with single-objective optimization or finite element 
iteration, the proposed method provided better performance under multi-objective 
conditions [18]. It enhanced both design efficiency and mechanical properties. 
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Figure 2. Optimized origami structure design and prototype verification. 

3.4. Stability and Cyclic Testing Performance 
As shown in Figure. 1(e-f), the origami mechanism maintained consistent 

performance over 80 cycles of loading. The amplitude of signal fluctuations remained 
stable, and no clear attenuation or failure was observed. The predicted values matched 
well with the experimental results from both the first and the eighteenth cycles. This 
indicates that the proposed prediction and optimization method is not only suitable for 
single design validation but also remains applicable under long-term cyclic conditions 
[19]. These findings confirm the stability and reliability of the data-driven model in 
engineering practice. 

3.5. Limitations and Future Perspectives 
Although the experimental and model results showed good consistency, this study 

still has several limitations. First, the dataset was mainly based on typical origami units 
and did not cover complex conditions such as material nonlinearity, manufacturing errors, 
and multilayer coupling. Second, the optimization process did not explicitly consider 
manufacturing constraints or durability indicators, which limits its direct application to 
engineering practice. Future work will focus on expanding the dataset in both size and 
complexity, exploring origami modeling under multi-physics coupling, incorporating 
manufacturability constraints into multi-objective optimization, and conducting 
interdisciplinary validation in robotics, aerospace, and medical applications. 

4. Conclusion 
This study proposed a machine learning-based data-driven design method for 

origami mechanisms, systematically addressing the efficiency bottleneck in modeling and 
optimization of complex origami structures. By building a dataset of 20,000 samples 
containing geometric parameters and kinematic performance, and by using deep neural 
networks to establish input-output mappings, the study achieved an average prediction 
error below 3% for folding angle and unfolding stiffness. The computational speed was 
about 15 times faster than finite element analysis, which improved the efficiency of design 
iteration. With the integration of a multi-objective optimization framework combining 
genetic algorithms and reinforcement learning, the load-bearing capacity increased by 
about 28%, and the unfolding efficiency improved by about 22%, verifying the advantage 
of data-driven methods in structural performance enhancement and rapid design. 
Compared with existing studies that mainly rely on finite element analysis or analytical 
modeling, the innovations of this work are proposing a large-scale data-driven modeling 
method for origami structures that achieves both accuracy and efficiency. The study 
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introduced intelligent optimization strategies to realize design improvements under 
multi-objective conditions and validated the method through experimental platforms and 
physical prototypes, which confirmed its feasibility and stability under long-term cyclic 
loading and real manufacturing conditions. It should be noted that this study still has 
some limitations. The training data were mainly derived from typical origami units and 
did not fully cover complex multilayer structures or material nonlinearities. In addition, 
the optimization process did not sufficiently incorporate manufacturing constraints or 
environmental uncertainties, which may limit direct application. Future work will focus 
on expanding the dataset to include more complex cases, introducing modeling under 
multi-physics coupling, enhancing optimization with manufacturing constraints, and 
carrying out multi-scenario validation in robotics, aerospace, and medical devices. In 
conclusion, this study provides an efficient path for rapid modeling and performance 
optimization of origami mechanisms. It also lays a foundation for applying intelligent 
design methods to reconfigurable structures and emerging engineering applications. 
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