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Abstract: This study investigates the effectiveness of integrated data frameworks and predictive
models in urban governance through empirical analysis of 120 city sub-regions. A dual-group ex-
perimental design was implemented, with the experimental group deploying a bi-directional recur-
rent model and cross-domain data integration, while the control group relied on conventional rule-
based methods. The results demonstrate that the proposed framework achieved significant im-
provements: traffic flow prediction accuracy increased with a 34.2% reduction in RMSE (12.3 vs.
18.7 veh/min) and a 31.9% reduction in MAE (9.1 vs. 13.4 veh/min), energy consumption decreased
by 13.5%, and public transport punctuality improved by 11.2%. Quality control through redundant
sampling, anomaly detection, and five-fold cross-validation ensured the robustness of the results,
with performance variance below 2.1%. Compared with existing approaches, the study highlights
the advantages of systematic data integration and model design in enhancing both system-level
efficiency and task-specific accuracy. These findings provide evidence for scaling predictive frame-
works to city-wide applications and underscore the importance of transparent, reliable, and sustain-
able pathways in urban system development.
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1. Introduction

With the rapid development of artificial intelligence (AI), smart cities have become a
major research focus for both scholars and policymakers worldwide. In recent years,
methods such as deep learning, reinforcement learning, and graph neural networks have
shown clear potential in urban governance, including transportation, energy, environ-
ment, healthcare, and public safety [1,2]. In smart transportation, studies have shown that
traffic flow prediction models based on deep neural networks can improve travel plan-
ning and congestion management [3]. Research on energy systems has also shown that
Al-based prediction and scheduling mechanisms can reduce carbon emissions and opti-
mize power distribution [4], while performance evaluation of renewable energy systems
such as photovoltaic installations provides additional insights into sustainable urban en-
ergy transitions [5]. In addition, Al applications in public safety and health monitoring—
such as computer vision in video surveillance and natural language processing in crisis
command systems—have improved the ability of cities to prevent and respond to risks
[6]. Related studies in medical and biological contexts further demonstrate how Al and
data-driven analysis can support healthcare, for example in microbiota regulation, cancer
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prevention, and disease management [7-9]. These results indicate that Al is moving from
isolated applications to cross-domain governance scenarios and has become an important
technical support for smart cities.

However, current research still shows several gaps. First, the lack of model interpret-
ability limits the practical use of Al in governance decisions [10]. Many city authorities
remain concerned about reliance on “black-box” models, which affects not only technical
transparency but also public trust and policy legitimacy. Second, data interoperability
across different departments is weak, with no unified standards or interfaces, which hin-
ders cross-departmental collaboration and integrated governance [11]. In fields such as
construction and infrastructure projects, digitalization practices highlight similar chal-
lenges in data standards and cross-platform coordination [12]. Third, ethical and social
equity issues of Al in cities have not been fully addressed. Algorithm bias, privacy pro-
tection, and data security have become central concerns, but most studies remain at the
conceptual level without practical solutions [13]. From a broader perspective, social sci-
ences emphasize that technology adoption should integrate cultural, economic, and edu-
cational considerations, which are also reflected in studies on market strategies, credit risk
management, and even art pedagogy [14-16]. Fourth, most Al applications are limited to
small-scale pilots, and large-scale deployment faces challenges such as limited computing
resources, high data heterogeneity, and low public acceptance.

To address these challenges, scholars have proposed several directions. Cross-do-
main Al integration has become a key area of research, aiming to combine data from trans-
portation, energy, and environment to improve overall governance capacity [17]. Explain-
able AI (XAI) is also growing rapidly and is regarded as essential for improving policy-
making and building social trust [18]. Some scholars stress that future smart cities should
adopt inclusive design, incorporating the needs of vulnerable groups into technology de-
velopment to avoid widening inequality [19]. At the same time, ethical and legal frame-
works are considered a necessary foundation for Al deployment in smart cities, especially
in data governance and accountability [20]. These trends show that future research must
pursue not only technical progress but also coordination at governance and social levels.
Even so, the shortcomings remain clear. Most of the literature proposes Al models for
specific scenarios but lacks systematic analysis of cross-domain integration, large-scale
deployment, and social acceptance [21]. The few available meta-analyses are mainly fo-
cused on transportation or energy systems and do not provide a framework that integrates
governance, ethics and design. A recent review systematically summarized Al-enabled
urban solutions and highlighted several critical research gaps, providing an important
reference for subsequent investigations [22]. Recent works on continuous integration and
delivery in software development also provide methodological insights into how automa-
tion can accelerate deployment in urban Al contexts [23]. Therefore, a systematic study is
needed to summarize progress, identify research gaps, and propose a strategic research
agenda that connects academic work with practical needs in urban governance.

In addition to these challenges, emerging perspectives highlight how Al-enabled
governance must also integrate insights from architecture, advanced materials, and sus-
tainable design. Architectural studies have emphasized the importance of adapting public
buildings to post-pandemic realities, underscoring how spatial design directly shapes so-
cial resilience [24]. Meanwhile, breakthroughs in material science and catalysis demon-
strate how urban sustainability may benefit from innovations in energy conversion, such
as electrocatalytic CO, reduction and seawater electrolysis for clean fuel production
[25,26]. These interdisciplinary directions indicate that the future of smart cities will not
only depend on algorithms and data platforms but also on synergies across engineering,
design, and environmental sciences.

2. Materials and Methods
2.1. Experimental Samples and Data Sources

This study selected 120 subregions from the infrastructure management system of a
large city as experimental samples. These subregions covered four areas: transportation
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hubs, energy networks, environmental monitoring, and public safety. The raw data col-
lected included traffic flow, energy consumption, air quality indicators, and crisis event
reports, with a total volume of more than 12 TB. The experimental group (n=60) deployed
an Al-based prediction and scheduling system using deep learning. The control group (n
= 60) maintained traditional rule-based management. To avoid bias, stratified sampling
was applied by geographic location, population density, and economic level, ensuring
that the two groups were comparable under initial conditions.

2.2. Experimental Design and Procedure

The experiment lasted six months, including one month for system testing and five
months for formal observation. The Al system in the experimental group was based on
graph neural networks (GNN) and a spatiotemporal attention mechanism to predict traf-
fic flow and energy demand. The control group used baseline models, including ARIMA
and traditional regression methods. The core evaluation indicators were prediction accu-
racy, system response speed, and energy optimization rate. A randomized block design
was applied during the experiment to ensure comparability of subregions under different
climate conditions, holidays and event disruptions [27].

2.3. Quality Control and Data Preprocessing

Several quality control measures were taken to ensure reliable results. First, multi-
source redundant sampling was used in the data collection stage. For example, traffic flow
was measured by both road cameras and mobile device trajectories to reduce the effect of
anomalies in a single source. Second, the collected data were standardized. This included
filling missing values with KNN interpolation, removing outliers using the 3o rule, and
applying smoothing to time series. Third, a cross-validation mechanism was used to test
the robustness of the Al system under different operating conditions. Each subregion was
evaluated with five-fold cross-validation to ensure that results were not dependent on one
partition alone.

2.4. Index Calculation and Statistical Analysis

Several indicators were used to compare the Al system with the control group. Pre-
diction accuracy was measured by root mean square error (RMSE) and mean absolute

error (MAE) [28]:
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The variables are defined as follows: y. is the true value, j, is the predicted value,

RMSE=

and n is the sample size.
The energy optimization rate (EOR) was obtained by comparing the average energy
consumption of the experimental group and the control group [29]:
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where E_poiis the mean energy consumption of the control group, and E.., is the

exp
mean energy consumption of the experimental group.

All experimental data were analyzed in the Python environment, mainly with the
scikit-learn and stats models libraries. A two-tailed t-test was used for significance testing,

and the significance level was set at 0.05.

3. Results and Discussion
3.1. City-Level Experimental Results

As shown in Figure 1, the smart city experimental system included transportation,
energy, public safety, and health services. In the 120 subregional samples, the results of
the Al system were consistent with the stratified sampling design described in the Meth-
ods section, which ensured comparability between the experimental and control groups.
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The experimental group performed better than the control group in energy consumption,
public transport punctuality, and crisis response. Average energy use decreased by 13.5%,
punctuality increased by 11.2%, and crisis response time was reduced by 9.7%. These re-
sults confirm the validity of the cross-domain data collection and sample grouping de-
scribed in the Methods section. They also show that system-level optimization driven by
multi-source data can achieve improvements across different dimensions. It is worth not-
ing that cross-department data integration allowed the experimental group to remain sta-
ble during holiday traffic fluctuations and peak energy loads [30]. This indicates that the
representativeness of the samples and the quality of data processing directly supported
the system-level results.

SMARTQ
_|
-

Figure 1. Al-enabled urban system architecture integrating transportation, energy, safety and public
services.

3.2. Performance Differences Between Control and Experimental Groups

The purpose of the control experiment was to compare the Al-based system with
traditional rule-based models. The results show that the two groups displayed clear dif-
ferences during the same observation period. The experimental group maintained lower
RMSE and MAE in both traffic prediction and energy scheduling, while the control group
showed sharp increases in prediction errors during holidays and unexpected events. This
difference corresponds to the “experimental group-control group comparison” logic de-
scribed in the Methods section and shows that Al models can capture complex nonlinear
patterns more effectively. In traffic prediction, the RMSE of the experimental group was
12.3 veh/min, compared with 18.7 veh/min in the control group, a difference of 34.2%. In
the energy system, the load prediction error of the experimental group was 28.6% lower
than that of the control group. These findings indicate that the experimental design not
only revealed the advantages of AI models but also avoided the bias caused by relying
only on single-point data [31].

3.3. Model Prediction Validation

Figure 2 shows the bidirectional recurrent structure of the traffic flow prediction
model, where the input layer includes three dimensions: flow, speed, and occupancy.
With quality control measures such as multi-source redundant sampling, missing value
imputation, and five-fold cross-validation, the model achieved consistent performance

22



Journal of Sustainability, Policy, and Practice Vol. 1, No. 3 (2025)

across subregions, confirming the effectiveness of the quality control measures described
in the Methods section. In cross-validation, the variance of model performance was less
than 0.05, indicating stable prediction results. Leave-one-out cross-validation (LOO-CV)
further showed that when any subregion was removed, the change in overall RMSE did
not exceed 2.1%, which demonstrates strong robustness. In contrast, the control group
model showed clear fluctuations under the same validation conditions, with RMSE
changes reaching 7.4%. This difference not only verified the advantages of the Al model
but also confirmed that the data preprocessing and model evaluation in the experiment
achieved the intended quality control goals [32].
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Figure 2. Bi-directional recurrent model structure for traffic flow prediction with multi-source in-

puts.

3.4. Comprehensive Evaluation of Indicators

Using the indicator system defined in the Methods section, this study quantified the
experimental results with RMSE, MAE, and energy optimization rate (EOR). The experi-
mental group showed reduced prediction errors in traffic tasks and achieved a 13.5% im-
provement in energy optimization, leading to better overall urban operating efficiency.
The control group retained some usability in low-complexity scenarios but performed
poorly under high fluctuations and multi-factor disturbances [33]. This result is consistent
with the idea of “comprehensive indicator evaluation” emphasized in the Methods section
[34]. It shows that a single indicator cannot fully reflect the performance of urban systems,
and that multi-dimensional evaluation is required to reveal the actual benefits of Al sys-
tems. From a research perspective, this study highlights the value of cross-domain Al in-
tegration but also points out limitations [35]. First, the sample size was limited to 120 sub-
regions, and future studies need city-wide validation. Second, although performance in-
dicators improved, issues of interpretability and ethical governance remain unresolved.
Future research should expand the experimental scale and build a more transparent ex-
planatory framework to enhance public trust and policy feasibility.

4. Conclusions

Based on empirical experiments in 120 urban subregions, this study systematically
tested the effects of data integration and prediction models in urban governance. The re-
sults show that the proposed method performed better than traditional approaches in
traffic prediction, energy scheduling, and crisis response. In traffic prediction, RMSE de-
creased by 34.2%. In the energy system, consumption was reduced by 13.5%. For public
transport, punctuality increased by 11.2%. These results reflect the advantages of cross-
domain data integration and bidirectional recurrent structures in complex urban environ-
ments. Compared with existing studies, this work not only achieved higher accuracy and
stability but also verified the reliability and generalizability of the method through strati-
fied sampling, control experiments, and multi-indicator evaluation. It also emphasized
the importance of experimental design and quality control. At the same time, this study
revealed several limitations. The experimental scope did not cover the whole city. The
explanatory ability of the model was still insufficient to fully meet the transparency needs
of policy-making. Issues of privacy and fairness also remain to be studied. Future research
should test the scalability of the method in larger urban systems and explore approaches
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that balance transparency, stability, and social acceptance. These efforts will provide
stronger support for the efficient operation and sustainable development of smart cities.
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